
IS THE ALGORITHM
PLOTTING AGAINST US?

ALGORITHM PLOTTING
IS THE

A Layperson’s Guide to the
Concepts, Math, and Pitfalls of AI

KENNETH WENGER

New York

ALGORITHM PLOTTING
AGAINST US?

© 2023 by Kenneth Wenger

All rights reserved
Printed in the United States of America
First edition

No part of this book may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and recording, or by any
information storage and retrieval system, without permission in writing from the
publisher. The only exception to this prohibition is “fair use” as defined by U.S.
copyright law.

Cover design by Fayyaz Ahmed
Cover image used under license from Shutterstock.com
Original book design and layout by James Protano

Library of Congress Control Number: 2022947822
ISBN 978-1-959632-01-6 (paperback)

Working Fires Foundation
1879 Whitehaven Road, Ste. 2040
Grand Island, NY 14072

workingfires.org

To my family

With regard to the question of whether we can make [machines] think
like [human beings], my opinion is based on the following idea: that
we try to make these things work as efficiently as we can with the
materials that we have. Materials are different than nerves and so on.
If we would like to make something that runs rapidly over the ground,
then we could watch a cheetah running, and we could try to make a
machine that runs like a cheetah. But it’s easier to make a machine
with wheels, with fast wheels, or something that flies just above the
ground in the air. When we make [an airplane], the airplane doesn’t fly
like a bird. They fly, but they don’t fly like a bird. They don’t flap their
wings exactly. They have in front another gadget that goes around, or
the more modern airplane has a tube that you heat the air and squirt
it out the back—jet propulsion. A jet engine has internal rotating fans
and so on and uses gasoline. It’s different, right? So there’s no question
that the later machines are not going to think like people think, in
that sense. With regard to intelligence, I think it’s exactly the same
way. For example, they’re not going to do arithmetic the same as we do
arithmetic, but they’ll do it better.

—Richard Feynman, “Computers from the Inside Out” (1985)

CONTENTS

List of Illustrations viii

Introduction: Living with Lions 1

1. Polarization and Its Consequences 11

2. Hello, Panda! 77

3. Answering an Age-Old Question 123

4. Intelligent Discourse 176

Conclusion: From Chat Rooms to Chatbots 219

Acknowledgments 231

Sources 233

Index 243

About the Author 249

ILLUSTRATIONS

Figures

1.1. A simple artificial neural network 13

1.2. Tumor cells of the covering membranes of the brain, 1890 17

1.3. A purkinje neuron from the human cerebellum, ca. 1900 18

1.4. A cut nerve outside the spinal cord, 1913 19

1.5. Cross section of the retina of a mammal 20

1.6. A McCulloch-Pitts neuron 22

1.7. An and logic gate 23

1.8. A not logic gate 24

1.9. An or logic gate 25

1.10. An and gate and an or gate controlling access into the EU 26

1.11. Three activation functions 29

1.12. A Rosenblatt perceptron 34

 ILLustrAtIons ix

1.13. Possible outputs of the and, or, and xor logic gates 37

1.14. A multilayer perceptron 41

1.15. Weight values of connections to h1
1 43

1.16. Weight values of connections to h2
1 44

1.17. Weight values of connections to h3
1 45

1.18. Weight values of connections to h4
1 45

1.19. Inputs and weight values of connections to h1
2 46

1.20. Inputs and weight values of connections to h2
2 47

1.21. Output of h2 as the input into the output layer 47

1.22. A best-fit line running through a set of data points 64

1.23. A vector in 2D space and a vector in 3D space 69

1.24. Two classes of vectors in a 3D space separated by
a hyperplane 71

2.1. Leonardo da Vinci’s Lady with an Ermine, with the
results of an edge detection operation and a Gaussian
filter operation 86

2.2. A 12 × 12 pixel image with the associated value
for each pixel, an edge detection filter matrix, and
a Gaussian blur filter matrix 88

2.3. The VGG-16 neural network architecture 91

x ILLustrAtIons

2.4. The VGG-16 neural network architecture divided into
a convolutional feature-extraction portion and an MLP
classifier portion 92

2.5. Applying the MaxPool operation 93

2.6. Hubel and Wiesel’s hierarchy model 113

2.7. Two artificial optical illusions created to fool
neural networks 120

3.1. A neural network as a funnel of information 125

3.2. Histogram of one thousand participants in a survey,
arranged according to height 130

3.3. Probability distribution for each possible measurement 130

3.4. Probability distribution function for a
coin-flipping experiment 135

3.5. Three scatter plots with best-fit lines running through
the data points 142

3.6. How a linear regression model can predict information
for missing data in a data set 144

3.7. Two ways to randomly place a line over a data set 146

3.8. A plot of the line y = x 152

3.9. A plot of the line y = x2 152

3.10. Graphing a simple loss surface 154

 ILLustrAtIons xi

3.11. A line running through two random points in
a data set 160

3.12. A logistic regression model separating two classes of
samples into different categories 163

3.13. Possible values of y ranging between 0 and 1 for any
input x for the logistic function 165

Tables

1.1. and Gate and Possible Input/Output Combinations 24

1.2. not Gate and Possible Input/Output Combinations 24

1.3. or Gate and Possible Input/Output Combinations 25

1.4. Feature Description of the Boston Housing Price
Data Set 65

2.1. Four Classes of Batteries Our Neural Network
Must Identify 98

2.2. Probability Outputs for Each Predicted Class 98

2.3. Probability Outputs Conveying a Neural Network’s
Lower Confidence Level on the Correct Classification 99

3.1. Distribution of Boys according to Height in a Survey 129

4.1. Predicting and Observing Recidivism in One
Hundred Cases (First Hypothetical) 203

4.2. Predicting and Observing Recidivism in One
Hundred Cases (Second Hypothetical) 204

IS THE ALGORITHM
PLOTTING AGAINST US?

Some days it feels like the whole world just can’t stop talking about
artificial intelligence, or AI. Some of it seems good and exciting,

like self-driving cars. We can already see cars maneuvering in certain
situations with little human interaction; it won’t be long before the
driving experience is all but automated. Some of it seems straight
out of Star Trek or an Arthur C. Clarke novel. Neuralink, a company
cofounded by Elon Musk, promises futuristic chips that can be inserted
into your brain and interface with your neural connections, initially to
help persons with disabilities gain lost functionality and eventually to
serve as a much faster interface with our digital world. Imagine surfing
the web (Does anyone still say “surfing the web”?) without needing
a keyboard. Then, there are voice assistants like Amazon’s Alexa and
Apple’s Siri that can understand our endless queries and respond in
impressive ways. All these advances might have you wondering how any
of this is possible. What is the source of knowledge in these machines,
and how do they actually work?
 Darker and more ominous undercurrents, however, have also
sparked interest in AI. If you haven’t watched the Netflix series Black
Mirror, you should. It’s great, and it’s also a reminder—or maybe a
warning—of what can happen when we lose control of our technology.
Maybe you’re reading this book to find out exactly how terrified you

INTRODUCTION:
LIVING WITH LIONS

2 Is tHE ALGorItHM PLottInG AGAInst us?

should be of AI. Maybe you’ve read news articles or seen Instagram
videos about companies likes Boston Dynamics creating animallike
robots that can maneuver in complex environments, perform such
sophisticated tasks as opening doors, and communicate with other
robots to achieve a common goal. Maybe you’ve thought, “Oh my
God, it’s too late. We are all going to die!”
 Whether your interest in AI is driven by hope and excitement or
gloom and despair, you want to know if this book is for you and what
you will get out of reading it. So let’s get right to it.

The purpose of this book is, first and foremost, to explain how
AI works at a level of detail that makes these algorithms accessible
to a general audience. You do not need a technical background to
understand this book; all that is required is a sense of curiosity and a
willingness to consider complex subjects. After reading the book, you
should have a good handle on the capabilities of state-of-the-art AI
algorithms so that you can evaluate and gauge your response to this
technology from an informed place.
 A lion in the wild can be dangerous to humans. But knowing
where they live, when they hunt, and their physiological capabilities
can help us modulate our response and behavior. If we find ourselves
on a safari in the African savanna, we should be alert. If we see a lion,
we might want to stay in our vehicles and keep enough distance so
that we can drive away if the lion decides to chase. We can do this
because we know how fast our vehicle can travel, and we know the
speed of a lion. We also know that lions can run, but they can’t fly. This
knowledge helps us gauge the level of readiness we ought to have in the
African savanna. The Maasai of Tanzania and Kenya understand this
better than anyone. They have coexisted with lions for millennia. They
use knowledge developed over generations to keep themselves and their
herds safe from lions. Once, long ago, they used their skills to track and
successfully hunt lions in traditional rites of passage. Now, increasingly,
they use those same tracking skills to protect and help preserve the

 LIVInG WItH LIons 3

king of the jungle. The Maasai do not fear the lion; instead, they have
learned to understand it.

On the other hand, if we find ourselves in the jungles of South
America, we know that we need not fear lions—other predators, sure,
but not lions, because there are no lions outside of Africa. In other
words, understanding the lion’s capabilities, limitations, and domain
helps us understand when we must worry about lions and when we
can be certain that we are safe from them. That is the goal of this book
(not to discuss lions—though we will come back to them in a later
discussion!): to help us understand the capabilities, limitations, and
domains of current AI technology.
 First, we need to define what we mean by AI in this book. When
we say “AI,” we are referring to a specific class of AI algorithms: artificial
neural networks. Readers may have heard of deep learning used in
conjunction with AI these days as well. This term often describes neural
network models with multiple layers of artificial neurons. We come back
to this relationship in chapter 1 and discuss the significance of each layer
in a neural network model. It is important to note, however, that AI is
a broad discipline in computer science; it spans many areas of research,
and countless algorithms fall under this umbrella term. We are aware of
the umbrage taken by purists—and those inclined to proper definitions,
terminology, correctness, and so on—when we use the terms AI and
neural networks interchangeably in this book, but the reality is that most
people ignore this distinction often enough that those terms are regularly
used interchangeably in informal contexts. Before proceeding, let’s make
a promise to eternally remember that AI is a broad discipline, and neural
networks are a class of algorithms belonging to that discipline. Having
promised to remember the distinction, we can now do as we please.
 Artificial neural networks are by far the most popular and
successful AI algorithm in use today. They are currently the driving
force behind advances in robotics, self-driving cars, Amazon’s Alexa,
and Google Assistant. In the pharmaceutical industry, it is expected that

4 Is tHE ALGorItHM PLottInG AGAInst us?

neural networks will make significant contributions to the discovery
of molecules that can be synthesized to treat debilitating diseases like
Parkinson’s, multiple sclerosis, and many others. At this point, it seems
like there is no problem big enough or abstract enough that artificial
neural networks cannot handle it. The corollary to this is that their
unprecedented level of success has also garnered for them a certain
level of distrust, or at least trepidation. If it can respond to me and
understand my queries so well, what else can it do? What is it thinking?
 Popular beliefs, science fiction, and media sensationalism have
conditioned us to distrust AI systems. That general distrust has taken
on one most prominent and particular flavor: these machines will
eventually become self-aware, wake from their eternal slumber, and
kill us. The problem with such concerns is that they serve as a bit of a
red herring. Regardless of whether we will eventually have to contend
with self-aware machines, it’s certainly not the only issue we should
be discussing at this time. Presently, science does not have a complete
theory of consciousness. We do not understand how consciousness
arose in ourselves. We don’t even have a definition of consciousness
that everyone agrees with. Recent advances in AI—mixed with a lack
of understanding of how AI systems work and a tendency on the part
of media companies to generate revenue by stoking fears—contribute
to a general sense that conscious artificial systems are just around the
corner, ready to enslave us. Society may have to grapple with conscious
AI in a distant future, but before we get there, plenty of more urgent
matters warrant discussion: What happens when AI is used in ad
campaigns? What about by law enforcement? Can AI algorithms
solve a problem in unique ways, where its measure of “success” differs
from that of its human designer? This last example is the well-known
alignment problem. Suppose you ask a robot to get rid of the CO2 in
the atmosphere to combat climate change, and it finds that the best
way to achieve this goal is to get rid of the human population. The
robot did not consciously decide to get rid of humans. The situation

 LIVInG WItH LIons 5

simply describes an optimization problem gone wrong (for us!).
Understanding when our current AI technology is being applied and
the potential unintended consequences of its misuse are real-world,
present-day issues that get pushed aside because they are not as exciting
as the thought of berserk smart blenders chasing us around the house.
 In this book, we first address the functioning of neural network
algorithms. We explain what it is that makes them tick and how they
manage to work at all. Then, we critically examine their limitations,
the rights and trust we have already granted them, and their potential
for causing significant harm to our society, in some cases, if we are not
careful. But let’s be clear: this harm is completely self-inflicted. The
algorithms are not yet “out to get us”; we just don’t always use them in
healthy and productive ways.
 Why should you get involved in this discussion if you are not
a scientist? Because each of us can influence our collective future.
Technology advances with research, and research is fueled by money.
Institutions get billions of dollars in government grants for research
into different areas. The grants are made possible by taxpayer money—
your tax money. You have the ability to influence policy every time
you go out and vote. The public can decide what areas of research
should get more attention. But how can you make an informed
decision without being, well, informed? When it comes to artificial
intelligence, there is a lot of speculation, often in the media, about
the dangers and the capabilities of AI. You will be much better served
by understanding how these systems work and what we realistically
need to worry about rather than making an emotional decision based
on uninformed sensationalist ideas. This way, you can at least arrive
at a decision by way of a thought process. If we don’t have a thought
process to ground our decision-making, as often happens, we get
disproportionate—typically radical and extreme—responses driven by
fear. This happened when stem cell research was all but banned in many
countries out of fears over possible misuse: critics concocted specious

6 Is tHE ALGorItHM PLottInG AGAInst us?

moralistic arguments and completely disregarded the ethical dilemma
of abandoning research that could contribute significant insight into
terrible diseases like cancer, AIDS, and degenerative muscle disorders.
 For many of us, AI immediately conjures up the specter of Skynet—
an intelligence created for the purpose of protecting national security
that inevitably gains consciousness and wreaks havoc on humanity—
and its cyborg assassin, the Terminator T-800. But our fear of AI might
derive from a more primitive and innate response to a perceived threat, a
response that predates the development of technologies whose imagined
descendants populate movies and science fiction novels—that is, the
fear of the unknown. More specifically, that fear has often manifested
as a fear of the Other: a creeping, gut-borne feeling characterized by
increasing and alarming suspicions of newcomers, outsiders, or anyone
beyond our circles of intimacy or relationality. What are these circles?
Interestingly, we construct different ones depending on certain rules of
engagement. First, there is the family circle, where we extend the most
trust. Beyond this, we have friends and more distant relatives. Even
our respective countries form a certain circle of trust, if not comfort;
we typically feel more connected to our compatriots than to people
from other parts of the world. We notice this when we travel and meet
a fellow expat. Immediately we feel a connection to them even though
we know very little about them; we just know that they belong inside
one of our circles.
 In its beneficial, or at least benign, form, this distinction between
insiders and outsiders can foster a sense of community. In its malignant
form, as the twentieth century showed in unconstrained horror, it leads
to xenophobia and fascism (and unfortunately such virulent nationalism
has been on the rise again around the world). So far, we are just talking
about relationships between people. What then can we expect from
our relationships with other beings, including the artificial kind? It
seems natural that we should be suspicious of artificial intelligence.
In some ways, it is the ultimate threat: by definition an outsider, not

 LIVInG WItH LIons 7

being human or natural, yet possessing the crown jewel of all qualities
that separate us from mere animals—intelligence.1 Intelligence has
given our species the superpower to change our planet and dominate
all other living things on it. When looking at the full scope of what we
have done with our intelligence—taking in our remarkable creations
in the arts and sciences, our developments and advances living as social
beings—in some very specific and clear ways, it has not served the
natural world well: destroying forests, polluting oceans and waterways,
wiping out entire species of plants and animals, and threatening
those that are still around. It is no wonder that we should be outright
mortified of a being, or entity, that shares very little with us yet finds
itself in possession of our ultimate weapon.
 It seems that our primary concern, then, is with the form and
extent of so-called intelligence in artificial systems. Over the course
of this book, we systematically describe the mechanisms that are
responsible for the advances we see today. Once we finally understand
the machinery behind AI, we should feel empowered to take charge of
our technology instead of being fearful of some synthetic omnipotence.
At the very least, establishing a foundational understanding will give us
the tools to judge what we should accept and what we should constrain
when it comes to artificial systems that are now making decisions that
affect our lives. My hope is that this book will not leave you feeling
afraid but rather informed and, therefore, empowered.

1. Apes, dolphins, and even some species of birds like crows and magpies are known to be
quite intelligent. When it comes to human-level intelligence, however, it’s quite clear that
we stand alone. In the context of discussing possible alien civilizations, the scientist and
educator Neil deGrasse Tyson has postulated that the difference in DNA between chimps
and us is 1 percent on average. He asks the question, “If the difference between humans and
chimps is driven by that one percent, and that one percent is responsible for an ‘intelligent’
chimp stacking boxes and an intelligent human building the Hubble space telescope, what
might the difference be between an advanced alien civilization and us, even if they are
just one percent smarter than us?” Now consider an AI that is just a few percent smarter
than we are. “Neil deGrasse Tyson: Only 1% Separates Our Intelligence from Chimps,”
YouTube video posted by Danica Patrick on Sept. 6, 2019, 4:54, https://www.youtube.
com/watch?v=F200wpEpJ4w.

8 Is tHE ALGorItHM PLottInG AGAInst us?

The rest of the book comprises four main chapters and a short
conclusion. In chapter 1, we discuss the first artificial neuron created by
humans and the history and motivation that led to its creation. Along
the way, we meet individuals who were driven purely by curiosity—
that insatiable need to understand everything about our universe,
from its physical laws to the phenotypic expressions of those laws. We
examine how the humble artificial neuron evolved into a network of
artificial neurons powerful enough to solve problems that were once
considered computationally intractable, such as image recognition
and natural language processing (e.g., understanding speech and
writing, translating between languages). Wherever possible, we point
out similarities between artificial and biological neurons, similarities
that inspired the early work in artificial intelligence. Importantly, we
unpack the multilayer perceptron—the first artificial neural network
architecture ever created and still a fundamental building block of
most state-of-the-art architectures in use today.
 Chapter 2 is all about vision. Here we discuss the problem that
computer vision presents. Today, we take for granted that cameras and
gadgets can track our faces and follow our movements. Even relatively
inexpensive drones can be programmed to track and film us as we
ski down a mountain. We search images for content using a variety
of applications and tools. These tools can take a search query from
us (something like “pictures of red cars in autumn”), analyze images
for content (that shows red cars in autumn), and then return a list of
images matching these search criteria. In the medical domain, similar
applications are capable of searching biopsy scans for anomalous tissues
that might be signs of disease. How is any of this possible? If you
keep up with technology, none of this is surprising or even impressive
anymore. But computer vision was once considered among the most
elusive subjects to tackle in computer science. In chapter 2, we see why

 LIVInG WItH LIons 9

computer vision is such a fundamentally difficult problem to approach,
and we discuss how artificial neural networks have all but solved this
problem. And finally, we introduce the convolutional neural network,
which has become the de facto architecture for computer vision. In fact,
together with the multilayer perceptron, they form a set of fundamental
building blocks used in most neural network architectures today.
Throughout, we continue to note the similarities between artificial
and biological systems and, wherever possible, describe the biological
system as the inspiration for and intuition behind the development of
the artificial one.
 The overarching goal of the first two chapters, then, is to specify
what neural networks look like and how they operate. Providing
the layout of the neural networks (in graphic and linguistic form),
we describe each layer and show how each neuron in one layer is
connected to the neurons in subsequent layers. We also detail the types
of operations taking place at each neuron. After reading chapters 1 and
2, you should be able to answer—at least at a conversational level—
what neural networks are and how information is processed from the
input to the output.

In chapter 3, we dive deeper into the how questions. This is where
we look at what gives artificial neural networks any right to work and
elucidate the mathematical intuitions that govern most of them. We
describe the training processes that enable neural networks to perform
certain tasks. This information allows us to understand their limitations
and start to grasp the current state of artificial intelligence. We explore
whether these systems are capable of conscious thought—whatever
that means to you—or whether they are enacting a more primitive
method of information processing.
 In the final main chapter, we take a step back from our pursuit
of understanding neural networks in specific and operational terms.
Instead, we put to good use the information we learned in the preceding
chapters and attempt a bit of introspection. Using our newfound

10 Is tHE ALGorItHM PLottInG AGAInst us?

knowledge, we again ask the question of how dangerous artificial
intelligence is and proceed to answer the question by evaluating levels
of threat. We discuss areas (the judicial system, advertising) where
artificial intelligence poses significant risk—without requiring the
technological leap of gaining consciousness—and examine industries
(automotive, health care, warehousing) where automation promises
an improvement over present-day standards. More importantly, in
this chapter we evaluate the current AI revolution against previous
technological revolutions and attempt to learn from the past to
understand our current moral and practical obligations.
 Having defused the panic about a robot takeover, in the conclusion,
we provide a simple test for identifying classes of problems that are
amenable to AI-based solutions and classes of problems that should
remain in human control for the foreseeable future. The test provides a
path to action by asking a set of questions for any new class of problems
we may want to solve using automation. This set of questions enables us
to reflect on the problem to understand whether the solution requires
nuanced and difficult moral considerations or simply a set of specific
rules to follow. Armed with these simple questions, we can then take
control of deploying our AI tools in responsible ways.
 So let’s get to it. The path to learning whether Alexa is conspiring
with Siri begins with chapter 1—including a brief diversion into what
amounts to present-day technology’s ancient past.

What are artificial neural networks? Are they really made of
neurons, like our brains? The structure of artificial neural

networks presents a starting point in our pursuit to understand them
but says very little about their capabilities and limitations. For this,
we must dig deeper and ask more pointed questions. Why were they
invented, and what kinds of problems can they solve? How do they
know things? Can they learn on their own, or do we have to teach
them? In this chapter, we dedicate considerable time to understanding
artificial neural networks and their history. Their origin story is one of
optimism and hope.

As you might imagine, the artificial neural network, much like
our own brains, began its life as a single cell. Complex networks
developed from that cell, and these networks are today’s rock stars of
artificial intelligence. We use them for making sense of data. We use
them to classify images, performing object recognition and tracking
for self-driving cars. You might have seen a Tesla successfully merge
from one lane to another without human intervention. The car has
cameras and other sensors that help it capture the state of the outside
world, but artificial neural networks are tasked with interpreting the
data from its sensors to identify vehicles, pedestrians, traffic signs, road
signs, and anything else that enables it to see the world. Researchers
are currently investigating using neural networks in medical settings

1

POLARIZATION
AND ITS

CONSEQUENCES

12 Is tHE ALGorItHM PLottInG AGAInst us?

as image classifiers to help diagnose different kinds of diseases, from
melanoma to breast cancer to pulmonary ailments like pneumonia. For
example, neural networks may be tasked with identifying anomalous
regions in image scans of biopsied tissue or signs of pulmonary effusion
in X-ray images. In a more general sense, we use artificial neural
networks to process large volumes of data and extract patterns and
trends from the data that might be significant to us. In some cases,
this involves analyzing images, but neural networks are not limited to
vision applications. We might train a neural network to predict the
price of houses in certain neighborhoods or teach it to analyze financial
markets’ historical data to forecast future trends. In other words, we use
artificial neural networks as tools to solve certain classes of problems—
namely, classification problems and forecasting problems.

But the history of artificial neural networks, in some ways,
is not the pursuit of a tool for artificial intelligence. It started with
researchers’ need to understand the human brain. Researchers like to
use analogs and models to investigate concepts. It is difficult, however,
to tinker with a real brain; people get in the way. Early researchers in
neuroscience and psychology thought it would be useful to try to build
an artificial brain as a step to understanding our own.

To try to answer the questions we opened with, this chapter is
broken into a few sections. We start by taking a stroll through the
halls of history and examining the earliest steps (in the nineteenth
century!) that contributed to building a functioning artificial neural
network. We discuss how researchers came to view the neuron as the
key element in information processing and look at the first artificial
neuron: the McCulloch-Pitts neuron. We explain how developments
in our understanding of the biological brain contributed to modifying
the McCulloch-Pitts neuron into a more powerful system called
the perceptron, which led to the simplest type of artificial neural
network—the fully connected neural network, also known as the
multilayer perceptron, or MLP (fig. 1.1). We explain why, although

 PoLArIZAtIon AnD Its ConsEQuEnCEs 13

artificial neural network research began in earnest in the 1950s, you
probably didn’t hear about such networks until very recently: research
in the field suffered many ups and downs from its inception, with
many of the downs driven, in part, by overhyped promises. We try to
make the case that, while hype is still a problem, it looks promising
that artificial neural networks will stick around. Once we establish the
progression of steps that led to modern artificial neurons, we examine
how these neurons can be combined into complex networks. We look
at examples and explain how information is processed by each neuron
in the network and how the output of the network is calculated and
interpreted. Finally, we close the chapter with a few use-case examples
for how we can employ neural networks to solve real-world problems.

Figure 1.1 A simple artificial neural network. Information flows from left to right.
The two circles in the first layer are the input nodes. The three circles in the middle are
the processing neurons, and the one circle on the right represents the output value.
The output in a neural network signifies a “prediction” on the input.

DISENTANGLING THE NEURON

Before we jump into the more technical aspects of neural networks
and how they function, let’s spend a few moments learning about
their history. Understanding what early researchers did to decipher
the mysteries of the brain will help shed light on why artificial neural
networks operate the way they do.

14 Is tHE ALGorItHM PLottInG AGAInst us?

To apprehend neural networks, biological or artificial, we must
begin with the neuron. We now know that our brains are made of
billions of neurons and that neurons are the fundamental building
blocks of information processing. But we didn’t always know this. And,
as is typical of scientific advancements, the discovery of the neuron and
interpretation of its function were not without contention. How did we
come to view the humble neuron as the fundamental unit of processing?
It starts with a young nineteenth-century Spaniard exuding energy and
enthusiasm. His name was Santiago Ramón y Cajal. He was the first
person to understand that the brain was made of individual neurons and
that these neurons played a pivotal role in information processing.

Cajal was born in 1852 in a small village in Aragon, in northeast
Spain. As a young man, Cajal’s first inclination was to become an artist.
He enjoyed drawing the natural world, a passion that would come in
handy in his future scientific career (figs. 1.2–1.5). His father was a
surgeon and professor of dissection at the University of Zaragoza. The
younger Cajal eventually followed in his father’s footsteps and enrolled
in the Zaragoza school of medicine, graduating in 1873. Cajal’s big
contribution to neuroscience began in 1887. That year, Cajal traveled
from Valencia to Madrid to learn about new technological advances
related to sample preparation for inspection under a microscope. There
he met a brilliant psychiatrist by the name of Luis Simarro Lacabra,
who showed him brain specimens stained using a technique developed
fourteen years earlier by the Italian Camillo Golgi. The technique
involved hardening a piece of brain matter in potassium dichromate
and later dousing it with silver nitrate. This had the effect of dyeing
only a few types of cells, revealing their complete structures as black
silhouettes against the unstained background. Those who knew of
this technique—not many, as the technique had not enjoyed great
dissemination in the fourteen years since its inception—knew it as
Golgi’s reazione nera (black reaction). Upon seeing the specimens
produced by Lacabra, Cajal quickly realized the inadequacies of the

 PoLArIZAtIon AnD Its ConsEQuEnCEs 15

current methods for studying nervous tissue. He would later write in
his autobiography that the staining technique produced cells “coloured
brownish black even to their finest branchlets, standing out with
unsurpassable clarity upon a transparent yellow background. All was
sharp as a sketch with Chinese ink.”2 Cajal used and improved the
staining technique as he studied the neural tissue composition of the
retina, cerebellum, and spinal cord.

At the time, the prevailing scientific consensus, driven in large part
by the German histologist Joseph von Gerlach, was that nervous tissue
consisted of cells sprouting a variety of tangled projections that formed
a continuous network known as the reticulum. According to this view,
unlike other organs of the body, which could be separated into distinct
components, the brain and nervous system could not be disentangled
into fundamental and distinct units. Camillo Golgi analyzed nervous
tissue following his own staining techniques and noticed that nervous
tissue cells had two different kinds of projections: a cluster of short
fibers that sprang and branched in many directions and a long cable that
didn’t branch very much. He noticed that the bodies of the individual
cells, although branching near other similar cells, did not in fact fuse
to form a continuous reticulum, but so accepting was he of Gerlach’s
description that he convinced himself that the long connections
sprouting from the cells probably still formed a continuous path at
some point he could not yet see.

It was Cajal who first realized the individuality of the cells in the
nervous system and, more importantly, the implications of what such
structural organization might mean. The reticulum description of the
nervous system was a monolithic representation impervious to external
prodding, threatening to forever keep its operational secrets hidden in
a singular mess of tissue. The idea that the nervous system is instead

2. Cajal’s autobiography, Recollections of My Life (Recuerdos de mi vida), trans. E. H. Craigie
with J. Cano (Cambridge, MA: MIT Press, 1989), quoted in Marina Bentivoglio, “Life
and Discoveries of Santiago Ramón y Cajal,” NobelPrize.org, Apr. 20, 1998, https://www.
nobelprize.org/prizes/medicine/1906/cajal/article/.

16 Is tHE ALGorItHM PLottInG AGAInst us?

made up of billions of individual cells helps, in many ways, break the
problem of understanding how it could function into fundamental
building blocks and forms the basic principles of today’s understanding
of the nervous system’s organization.

Between 1894 and 1904, Cajal developed one of his most
important works, Textura del Systema Nervioso del Hombre y los
Vertebrados (Texture of the Nervous System of Man and the Vertebrates).
This work contained detailed analyses and illustrations, made possible
by Cajal’s artistic affinities and preparation in his younger years, of
nerve cell organization and nerve cell structures. His illustrations
continue to be reproduced in neuroscience textbooks even to this day.
One of Cajal’s most important contributions is known as the law of
dynamic polarization. This law states that nerve cells are polarized by
splitting their main function between two distinct parts of their bodies,
the input and the output parts. Cells receive input signals on their
bodies and dendrites; they generate output signals through the axons.

Framing the humble neuron as a discrete system capable of
receiving inputs and producing an output formed the basic principle
of how neural information is propagated in the brain. For their
contributions to neuroscience, Golgi and Cajal shared the 1906
Nobel Prize in Physiology or Medicine. Golgi’s Nobel lecture
included a description of his view that neurons form reticular
networks. Interestingly, this assertion was then contradicted entirely
by Cajal’s Nobel lecture, which necessarily focused on the role of the
neuron as a distinct unit of the nervous system, far from the concept
of a singular, inaccessible reticulum. Cajal continued to fight for his
discoveries and disseminate his ideas until his death in 1934. Those
ideas form the foundations of the modern understanding of neural
information processing, and his contributions are central to artificial
neural networks.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 17

Figure 1.2 Tumor cells of the covering membranes of the brain, 1890. Cajal Institute
(CSIS), Madrid.

18 Is tHE ALGorItHM PLottInG AGAInst us?

Figure 1.3 A purkinje neuron from the human cerebellum, ca. 1900. Cajal Institute
(CSIS), Madrid.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 19

Figure 1.4 A cut nerve outside the spinal cord, 1913. Cajal Institute (CSIS), Madrid.

20 Is tHE ALGorItHM PLottInG AGAInst us?

Figure 1.5 “Coupe transversal de la rétine d’un mammifère” (Cross section of the
retina of a mammal). Illustration from Les nouvelles idées sur la structure du système
nerveux: chez l’homme et chez les vertébrés (Paris: C. Reinwald, 1894), 112.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 21

 It’s difficult to imagine the full impact of the functions of such a
simple unit, which takes an input signal and produces an output signal.
It’s hard to conceive that when aggregated over a network of billions of
such connections we might get intelligence or even conscious behavior.
Scientists aiming to explain how activities in the brain relate to overt
behavior in the individual have puzzled over this problem for centuries,
and they continue to do so today. To understand how complex systems
work, it is important to prod them, measure them, and alter their
organization in ways that allow us to ascertain a correlation between
output behavior and the state of the system at each point in time. Clearly,
we are limited in our ability to perform these kinds of investigative and
analytical work when it comes to biological (especially human) brains,
as changes in these areas typically come with severe adverse effects in
the individual. The need to understand biological neural information
processes birthed a new set of tools that eventually heralded a new age
of artificial intelligence. But it all started with the need to understand
the brain. The holy grail was to build a model of the brain that we
could tinker with.

GATEWAYS AND GATES

In 1943, Warren McCulloch and Walter Pitts published a research
paper titled “A Logical Calculus of Ideas Immanent in Nervous
Activity,” where the authors proposed the first model of an artificial
neuron. It was a very simple system: a node with inputs that could
be either 0 or 1 and a firing threshold, which could be any value and
served as a mechanism for determining when the neuron would fire. To
fire, the aggregate of the input values into the neuron needed to match
or exceed the threshold.

For example, consider a neuron with two inputs X1 and X2, a
threshold value of 2, and an output Y. If both inputs X1 and X2 are 1,

22 Is tHE ALGorItHM PLottInG AGAInst us?

then 1 + 1 = 2, which matches the threshold value of 2; therefore, the
neuron fires, and Y = 1 (fig. 1.6). If both inputs are 0, then 0 + 0 = 0,
which does not match or exceed the threshold value of 2; thus, the neuron
does not fire, and Y = 0. Moreover, if either input signal is 0, then 1 +
0 = 1, which does not meet the firing threshold of 2. Again, the neuron
would not output a signal, and the output value Y would be 0. This was
the first functioning artificial neuron, and whenever you see your little
Roomba headbutting a table leg in apparent artificial frustration, take a
moment to think back to Santiago Ramón y Cajal and the McCulloch-
Pitts neuron; the little Roomba would not exist without them.

1

1

1
2

X 1

X 2

Y
2

Figure 1.6 A McCulloch-Pitts neuron with two inputs, a firing threshold of 2, and
one output. In the example on the right, both input signals have a value of 1.

 The McCulloch-Pitts neuron is a simple system meant to model
the most elemental functions of biological neurons. In 1943, thanks to
previous work by Cajal and Sir Charles Scott Sherrington (a 1932 Nobel
laureate and author of The Integrative Action of the Nervous System), we
knew that biological neurons received input signals via the dendrites and
that based on some internal threshold or a more nuanced calculation, the
neuron would either send out a signal through the axon or not. If you
notice, the McCulloch-Pitts neuron approximates the basic elements in
this process. It expects a set of values through the input connections, and
based on a simple internal state (a threshold value), it outputs either a 1
or a 0. The question is how useful a system like this is. Can we really do
anything with something so simple? It turns out that we can.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 23

One of the more useful things we can do is implement a special
set of logic functions known as logic gates. Interestingly, all modern
advanced electronics and computing are based on logic gates. They help
us transform 0s and 1s from signals traveling in a wire to states upon
which we can make decisions. To build the intuition for how simple
systems like neurons can perform complex tasks when integrated in
complex networks, it will be helpful to understand logic gates. The
simplest logic gates are not, and, and or.

AND Gates
The and logic gate has two input wires (fig. 1.7). When both input
wires are “on” (i.e., both wires have a signal representing the value 1),
the output of the and gate is 1. If both input wires are “off” (i.e., both
wires have no signal, representing the value 0) or even if either one of
the input wires is “off,” the output of the gate is 0. For the and gate to
output a signal of 1, both input 1 and input 2 must be 1 (table 1.1).

How can we utilize this capability in a more practical use case?
Suppose you are building a security feature common in industrial
machines—like a hydraulic press—where to ensure that the operator’s
hands are off the danger area while the machine is operating, there are
two buttons that must be constantly pressed by the operator for the
machine to work. In this system, you might add a logic and gate with
input wires connected to the two buttons in the control panel and
connect the output of the logic gate to the machine’s circuit controller.
Only when both buttons are pressed will both inputs to the and gate
have a value of 1, and only then will the and gate output a 1, signaling
that the heavy machinery can proceed to operate. If neither of the
buttons is pressed or if only one button is pressed, the and gate will
output a value of 0, and the machine will remain off.

1
0

0
AND

Figure 1.7 An and logic gate with two inputs and one output. If either of the inputs
is 0, the output is 0. If both inputs are 1, the output is 1.

24 Is tHE ALGorItHM PLottInG AGAInst us?

Table 1.1 and Gate and Possible Input/output Combinations

Input 1 Input 2 Output
0 0 0

0 1 0

1 0 0

1 1 1

NOT Gates
The not logic gate is probably the simplest of the logic gates, and it
functions as a signal inverter (fig. 1.8). It has one input wire and one
output wire. If the input is 0, the gate outputs a 1. If the input is 1, the
gate outputs a 0 (table 1.2).

We can apply this behavior to a wide array of use cases. For
example, suppose we want to design a sensor that can tell us if the fuel
inside the fuel tank of a car drops below a certain level. We might set up
a fuel sensor connected to a not gate. While the sensor is submerged
in the fuel, the input to the not gate is 1, and the output is 0. An
output signal of 0 is interpreted by the control circuit as the fuel level
being fine. As soon as the fuel level drops below the sensor’s reach, the
input signal to the not gate becomes 0, and the output turns to 1. This
causes the not gate to send a signal to the control board indicating that
we are low on fuel.

0 1NOT

Figure 1.8 A not logic gate, with one input and one output. If the input is 0, the
output is 1. If the input is 1, the output is 0.

Table 1.2 not Gate and Possible Input/output Combinations

Input 1 Output
0 1

1 0

 PoLArIZAtIon AnD Its ConsEQuEnCEs 25

OR Gates

The or logic gate is similar to the and gate (fig. 1.9). It has two input
wires and one output wire. It outputs a signal when either input wire
is on (table 1.3).

Again, we can take advantage of this function by acting on an
event based on a sequence of past events. Say that we are tasked with
implementing a payment system for a public transportation service,
a subway, and there are two methods customers can use to pay the
fare. They can choose to scan a payment card and transfer the funds
electronically, or they can choose to pay in cash. The payment system can
be connected to an or gate where the electronic payment system and the
coin collector system are connected to the input wires of the logic gate,
and the output of the or logic gate is connected to the controller board
for the turnstile. While the customer has not paid either electronically
or using cash, the or gate continues to not output a signal (output is 0),
and the turnstile remains locked. As soon as the customer pays either
electronically or using cash, a signal (output is 1) is sent to the turnstile’s
controller board that lets the customer pass through.

1
0

1OR

Figure 1.9 An or logic gate with two inputs and one output. If either input is 1, the
output is 1. If both inputs are 0, the output is 0.

Table 1.3 or Gate and Possible Input/output Combinations

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 1

26 Is tHE ALGorItHM PLottInG AGAInst us?

Logic Gate Systems
Hopefully you can begin to see how powerful individual logic gates
can be. And just as individual neurons are combined to form powerful
networks, we can also combine logic gates by using the output of one
gate as the input to another gate.

Consider an automated process for receiving travelers at an airport
in a country belonging to the European Union. (Clearly this is an
unrealistic example, but bear with me.) There are two ways to get into
the country: if you are a citizen of the EU, you can pass right in; if you
are not a citizen of the EU, you must show a valid visa and international
passport. We could build a system that lets travelers through based on
an and gate combined with an or gate (fig. 1.10). The and gate is
connected to one of the or gate’s inputs. The and gate outputs a 1 if
you have an international passport and a valid EU visa. The other input
of the or gate is set to 1 if you are a citizen of an EU nation. Following
this logic, if you are a citizen of the EU, at least one of the inputs into
the or gate is set to 1; therefore, the output of the or gate is 1, and
you are allowed through. If you are not a citizen of the EU, one of the
inputs into the or gate is 0, so for the or gate to output 1, the other
input must be 1. The other input depends on the output of the and
gate, which is only 1 if you have both an international passport and a
valid EU visa.

OR

AND
1

0

1 1

1

Figure 1.10 An and gate and an or gate automatically controlling access into the EU.

We can continue to combine logic gates and build complex circuit
systems. In fact, if we combine enough logic gates (millions of them),
we can build modern computers. Logic gates are the building blocks

 PoLArIZAtIon AnD Its ConsEQuEnCEs 27

of the control flow and decision systems that form the backbone of
programming languages. Software consists of a series of instructions
that a computer can understand. These instructions are sometimes
predicated on certain logical conditions (e.g., “if this, then that”). Those
conditions are made possible by logic gates. When we read about new
computer processors—CPUs or GPUs—sporting millions of transistors,
this is essentially what those numbers mean. Transistors are used to a
large extent to implement logic gates, so millions of transistors equate to
millions of logic gates. So why, again, are we talking about logic gates?

It turns out that we can build logic gates using McCulloch-Pitts
neurons, and logic gates were already well-known constructs in the
1950s.3 This provided scientists with the realization that if you could
build logic gates with artificial neurons, then these neurons could be
used to build other kinds of powerful systems, maybe even a model
of the brain. It gave scientists permission to continue investigating
artificial neurons.

Fine-Tuning the Neuron
A limitation of the McCulloch-Pitts neuron is that it takes binary inputs
and outputs binary values. Even in the 1940s, we knew that inputs into
biological neurons were not always binary values (i.e., full-intensity
signal or zero-intensity signal). In biological neurons, the signals are
nuanced and cover a range of intensities. Furthermore, the decision
on whether the neuron should fire, also referred to as the activation
function of the neuron, used in the McCulloch-Pitts neuron is the
threshold function, which again we knew doesn’t resemble biological
neurons very closely (fig. 1.11).

In 1949, Donald Hebb, a Canadian psychologist researching
how neurons contribute to the learning process, wrote a book titled
The Organization of Behaviour. In this book, Hebb introduced the

3. Charles Babbage (widely regarded as the father of the digital computer) used early
(mechanical!) logic gates in the 1830s in his “analytical engine.” In the 1920s and 1930s,
more modern logic gates were invented for the computers of the time.

28 Is tHE ALGorItHM PLottInG AGAInst us?

theory of Hebbian learning, which revolutionized the way neural
information processing was understood and helped change the
way that artificial neurons were implemented. In his book, Hebb
says, “When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.”4 In this statement
Hebb proposes that as neurons fire together, not only is the connection
between the neurons strengthened, but this very operation is a
fundamental step in the learning process. This suggests that weights
should accompany the connections to neurons, where the weights
modulate the importance of each connection over time. That is, the
information flowing through a neural network is not dictated by the
input values alone; the connections between the neurons themselves
are strengthened or weakened through the learning process by adding
a weight value to each connection. The weights affect how much of
the input value into that connection is received by the neuron. The
addition of weights means that neural networks are not obdurate,
unchanging things. Instead, they can be adjusted, and information
can be routed and rerouted depending on how the connections
between the neurons are strengthened or weakened, much like how
water might flow downriver depending on which obstacles it finds.

Take a moment to ponder this discovery. It was extremely
important. The addition of weights to the connections was akin to
adding a frequency tuning dial to a radio. A radio that is built tuned
to a specific frequency, with no dial, is like the McCulloch-Pitts
neuron. We must rebuild the neurons to change their outputs, just
as we must rebuild the radio to change the frequency it’s tuned to.
The addition of weights to the neuron suggests that we can move the
tuning dial on the neurons and change their behavior at run time,
much as we can change the frequency on a radio by turning the dial.

4. D. O. Hebb, The Organization of Behaviour: A Neuropsychological Theory (New York: John
Wiley & Sons; London: Chapman & Hall, 1949), 62.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 29

(a) (b) (c)

0 1

1

–1

–10 1

1

–1

–10 1

1

–1

–1

Figure 1.11 Three activation functions we refer to often in this chapter. The sigmoid
activation function (a) outputs a value between 0 and 1 for all its inputs, with an
input 0 producing 0.5 as output. The rectified linear unit activation function (b)
outputs 0 for all negative inputs, and outputs the unmodified input value for all
positive inputs. The threshold function (c) outputs a 0 for all input values below the
threshold value; for input values equal to or greater than the threshold, it outputs a 1.

THE PERCEPTRON

Frank Rosenblatt, an American psychologist working in 1958 at
the Cornell Aeronautical Laboratory as part of a project funded by
the U.S. Office of Naval Research, studied the work on the artificial
neuron done by McCulloch and Pitts and recent discoveries by Hebb
and developed the perceptron. The perceptron was a modification of
the McCulloch-Pitts neuron that incorporated Hebb’s weighted input
connections, as well as allowing each individual input to take a value
between 0 and 1, instead of the binary (all-in/all-out) approach of
the McCulloch-Pitts neuron. These changes more closely aligned the
perceptron to biological neurons.

The history of artificial neural networks is riddled with subtle
but crucial discoveries. The addition of weights and real numbers
(numbers with fractions that can measure continuous quantities; e.g.,
all numbers between 0 and 1, not just 0 or 1) hinted that it might be
possible to build general models of the brain that could be adjusted
to solve general sets of problems, as opposed to specific problems. As

30 Is tHE ALGorItHM PLottInG AGAInst us?

Rosenblatt described in his 1961 book, Principles of Neurodynamics,
there are two approaches to creating models for studying the brain:
monotypic models and genotypic models.

Monotypic models are similar to our pretuned radios with no dials,
while genotypic models are adaptable and allow tuning to different
frequencies without having to build a different radio. In the monotypic
model, we start with functional requirements of some “psychological
function,”5 for example, a well-defined recognition algorithm with
specific input/output conditions. That is, in the monotypic model, we
find a psychological function that we want to model. Say we want
to model how smell is processed in the brain. We might design an
artificial system capable of detecting certain types of smells and then
design a specific reaction to each smell. Once our artificial system is
functioning, we monitor the process of detecting smells and reactions
to each smell in a human volunteer, and we try to find where the
artificial and biological systems are similar. The monotypic approach
for studying the brain starts with a specific set of inputs and specific
set of desired outputs, builds a system that can map those inputs to the
desired outputs, and finds similar behavior in biological systems. We
might then update our model based on what we see in the biological
systems. This approach better aligns with the McCulloch-Pitts neuron.
It is a purposeful approach where we know exactly the kind of solution
we are building.

In the genotypic approach, instead of starting with well-defined
functions and comparing our artificial system to the brain, we start
with a set of generic learning rules and build a more general algorithm
that can learn to model any set of problems following the same
training procedure (rather than a training procedure or design specific

5. Frank Rosenblatt, Principles of Neurodynamics (Buffalo, NY: Cornell Aeronautical
Laboratory, 1961), 11. All other quotes in this section are drawn from Melanie Lefkowitz,
“Professor’s Perceptron Paved the Way for AI—60 Years Too Soon,” Cornell Chronicle, Sep.
25, 2019, https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-
60-years-too-soon.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 31

to the problem at hand). For example, instead of building a system
for detecting a defined range of smells, another system for detecting
a defined set of tastes, and yet another system for detecting a desired
range of sounds, the genotypic approach aims to find a generic design
that can detect input stimuli that could be sounds, tastes, or smells. The
genotypic approach lends more plasticity to the design of our artificial
networks because the design does not have to closely implement a set
of initial requirements; instead, the network can learn to adjust itself
to develop the requirements that help it meet its output goals. By
incorporating both real-number values into the network connections
(numbers between 0 and 1), as opposed to the Boolean (0 or 1, true
or false) nature of the McCulloch-Pitts neuron, and the weighting of
synaptic connections, the Rosenblatt perceptron is better equipped for
implementing genotypic models.

Rosenblatt viewed decision-making and intelligence in the brain
as following a set of statistical and probabilistic algorithms where,
instead of mapping a set of input stimuli to a specific set of output
psychological behaviors (monotypic models), the brain maps classes
of inputs to classes of outputs (genotypic models). There is a very
important distinction between these two approaches. If the brain
functioned exclusively based on mapping specific inputs to specific
outputs—the collection of predefined algorithms necessary to perform
all the functions we perform daily and throughout our lives—we
would need a staggering collection of discrete algorithms in our brains.
This would make the dream of creating artificial systems capable of
emulating human-level intelligence almost certainly impossible. If,
instead, the brain functioned as a statistical system mapping classes of
inputs to classes of outputs, we would not need a specific algorithm for
every function we perform; we’d just need an algorithm for each class
of functions we perform. This at least offers a reduction in the number
of systems we need to emulate if we want to artificially build human-
level intelligence.

32 Is tHE ALGorItHM PLottInG AGAInst us?

Of course, the brain (and nature) need not listen to Rosenblatt,
and in fact, it may be that the brain employs both approaches, some
specific algorithms for special functions and generic algorithms for
most other functions. Rosenblatt’s point was that if we want to have a
shot at building a system that resembles human intelligence, and since
we don’t really know how the brain exactly works anyway, let’s assume
that it works in the way that offers us a greater chance at emulating
it and see how far we get. It is important to note that Rosenblatt, at
least initially, did not build the perceptron with the purpose of creating
artificial intelligence for its own sake. His primary goal was to build a
system that he could tinker with and alter to help him better understand
our brain.

So how did this perceptron really work? The Rosenblatt perceptron
functioned as follows: For a perceptron with five inputs X1, X2, X3,
X4, X5, each input connection (analogous to the biological neurons’
synapses) has a weight (w1, w2, . . ., w5) associated with it. The weights
are also real numbers, which means they can take any value between
0 and 1 (note that the values can also be greater than 1, but they are
typically normalized to the 0–1 range). The process for calculating the
output of a perceptron is to perform a weighted sum over the inputs
and apply the activation function on the result. The classic activation
function for the perceptron was the threshold function, just as it was
with the McCulloch-Pitts neuron, but, as we saw in figure 1.11, there are
many activation functions that could be used. In the case of the threshold
function, we check whether the result of the weighted sum is greater than
the threshold value. If it is, the neuron outputs a 1; otherwise, it outputs
a 0. A weighted sum operation is performed as follows:

 PoLArIZAtIon AnD Its ConsEQuEnCEs 33

The formula might look complicated but remember that
simply means a sum, so the equation is saying that the output value
(V) is equal to the sum of the input values (x) times the weight (w)
of the connections, for all inputs (j), plus b. We are going to largely
ignore b until chapter 3. For now, we just need to know that it’s
called a bias, and as we can see, it doesn’t contribute a lot to the
output compared to the input connections and the weights.6 For the
next two chapters, we want to build an understanding of how neural
networks work at the neuron level, so we are going to concentrate on
the most important part of the input/output process—that is, the
inputs, the weights, and the activation functions. Once we calculate
the weighted sum over the inputs, we take the resulting value V and
perform the activation function calculation O = f(V), which gives us
the output value (O) for the neuron.

To calculate the output of the perceptron shown
in figure 1.12, we perform the following operation,

, where f is the
threshold activation function with a threshold value of 2. The neuron
outputs a 1 if the result of the summation is greater than or equal
to 2; otherwise, it outputs a 0. This all sounds great, but how do we
get these magical weight values? The weights of the perceptron are
initially chosen randomly; they then get adjusted during the training
phase of the model when the output is evaluated against expected
results, and updates are made to the weights to ensure that the model
performs better during each iteration of the training cycle. But more
on this later.

6. The bias is certainly a necessary term, and depending on the scale of the data, it can become
quite important. We are temporarily ignoring this term, however, because the more involved
calculations concern the connection weights. The math is already complex enough, and
accounting for the bias in our calculations might confuse novice readers. But note that,
as described by the equation, we would add the bias term after every set of per-layer
transformations.

34 Is tHE ALGorItHM PLottInG AGAInst us?

Output
2

X1

X2

X3

X 4

X 5

w1

w2

w3

w4

w5

Figure 1.12 A Rosenblatt perceptron with five input connections. Each connection
has a weight (w) associated with it. The value of the weight can be any number between
0 and 1. The output of the perceptron depends on the weighted sum operation passing
the threshold test.

 If you are wondering whether this perceptron has practical
applications or if it’s just a scientific novelty item, it is definitely
useful in solving certain types of problems. The perceptron was first
implemented in software for the IBM 704. It was a computer the size
of a room and used punch cards as a user interface. That perceptron
was trained to distinguish between punch cards marked on the left
and punch cards marked on the right—an incredible achievement for
the time. Rosenblatt called the perceptron “the first machine which is
capable of having an original idea.” The first implementation of the
perceptron as an automation tool was the Mark 1 perceptron, developed
in 1958; in this case, it was a machine, as opposed to software. It was
designed for image recognition capable of analyzing input images of
20 pixels width by 20 pixels height. The input into the perceptron
was a camera with 20 × 20 calcium sulfide photocells. The 400 (20
× 20) photocells were randomly connected to the input channels of
the perceptron; that is, the system employed a perceptron with 400
inputs. The weights of the connections to the perceptron were encoded
by an array of special resistors called potentiometers, which could be
actively adjusted to vary the resistance and in turn vary the voltage.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 35

In computer systems, values of 0, 1, and anything in between are
represented using voltages. The potentiometers were useful to allow
for adjusting each connection weight at run time and representing
any value between 0 and 1. The potentiometers were adjusted during
the learning phase using electric motors to dial into the right voltage
value for each weight. In 1959, Bernard Widrow and Marcian Hoff
of Stanford University applied advances in the perceptron to the first
implementation of neural networks to solve a real-world problem.
These were artificial neural networks trained to eliminate noise from
phone lines. Named ADALINE and MADALINE (which stand for
ADAptive LINear Elements and Multiple ADAptive LINear Elements,
respectively), these systems are still in use today!
 It seemed that all was going well with artificial neural networks,
and real artificial intelligence—complete with humanlike androids
ready to do our bidding—was just over the horizon. So what happened?

Right around this time, enthusiasm over a possible new era of
human-machine interactions seemed to reach a boiling point, with the
New York Times running an article titled “new navy device learns by
doing: Psychologist Shows Embryo of Computer Designed to Read and
Grow Wiser” and the New Yorker writing, “Indeed, it strikes us as the
first serious rival to the human brain ever devised.” Rosenblatt himself
didn’t do much to ground such overhyped expectations with statements
like, “We are about to witness the birth of such a machine—a machine
capable of perceiving, recognizing, and identifying its surroundings
without any human training or control.”7

CALL OF DUTY RESCUES THE NEURAL NETWORK

Unfortunately for Rosenblatt, and artificial neural networks in general,
the excessive attention these systems garnered in a short period served
to irk artificial intelligence researchers pursuing more traditional

7. Lefkowitz, “Professor’s Perceptron.”

36 Is tHE ALGorItHM PLottInG AGAInst us?

approaches. Most notable among these researchers was Marvin Minsky,
who in 1969 coauthored a book titled Perceptrons (with Seymour
Papert). In the book, Minsky took aim at the perceptron and its
inability to distinguish between classes that are not linearly separable.
The perceptron that Rosenblatt implemented for image recognition
using a 20 × 20 photocell camera consisted of a single-layer perceptron,
and single-layer perceptrons are limited to linearly separable problems.
That is, if you think of a classifier as a line that separates two classes
of objects (say, blue dots from red dots), a line can only separate these
two classes of objects if they are arranged in such a way that a line can
bisect the space in which they live. Take a group of blue marbles and
red marbles spread over a tabletop: we could position a stick between
the red marbles and the blue marbles only if the marbles are already
grouped by color. If the marbles are mixed on the surface of the table,
a stick could not be placed in a way that separates blue marbles from
red marbles. This is the attack that Minsky launched on the single-layer
perceptron. More specifically, he cited that the single-layer perceptron
could not implement the exclusive or (xor) logic gate.

We discussed logic gates earlier in the chapter. If we refer to the
description of the or gate, we saw that the gate outputs a 1 if either
input X1 or X2 is 1, including the case where both inputs are 1. The
xor gate outputs a signal of 1 only if either input X1 or X2 is 1, not if
both are 1; this is the “exclusive” part. It turns out that the single-layer
perceptron cannot implement this logic gate. To understand why, it
helps to think of the perceptron as a linear classifier. If we graph out
the possible gate outputs depending on the possible gate inputs, we see
that for the and and or gates, we can easily draw a line that separates
the 0 and 1 outputs, but for the xor gate, we cannot draw a single line
that separates the two classes of outputs (fig. 1.13). This has profound
implications because the kinds of problems we need to solve in the real
world are most often not linearly separable.

To be fair, Minsky was aware that a plausible solution to this
problem was to stack more perceptron layers together and create a more

 PoLArIZAtIon AnD Its ConsEQuEnCEs 37

complex neural network. The problem, as Minsky pointed out, was
that a neural network complex enough to solve nonlinearly separable
problems like the classification of images of higher resolution would
take an impractically long time to train. That is, it would take too long
to calculate the correct weight values for each connection between the
neurons in each layer. This criticism ushered in an era that is known
as the “AI Winter.” For the next twelve years, government funding for
neural network research all but dried up. This is the problem with hype,
and science is not immune to it. Scientific progress typically happens
along a smooth curve, with new findings slowly building up from
previous discoveries; that is, it’s a gradual process. Only seldomly does
scientific progress experience a stepped advance where a new discovery
significantly improves on established wisdom. When some scientists
and the media invariably overhype new technologies or discoveries, the
hype contributes to the technology’s demise when predictably the result
does not match the public’s expectations. It’s easy to play historical
revisionism, but perhaps Minsky’s attack would not have been so lethal
if instead of expecting the perceptron to be the end-all-be-all solution
to AI, we had just seen it as a gradual step in the right direction.

X1

X2

X1

X2

X1

X2

AND OR XOR

= 0 = 1Output:

Figure 1.13 Possible outputs of the and, or, and xor logic gates. The and gate outputs
a 1 only when both X1 and X2 are 1. This is shown as the red circle; otherwise, it outputs
a 0 (blue circle). The outputs of an and gate are linearly separable: we can draw a single
line that separates the two classes of outputs, 0 and 1. The same is true for the or gate.
But for the xor gate, we cannot draw a single straight line to separate the classes of
outputs: the outputs of the xor gate are not linearly separable.

38 Is tHE ALGorItHM PLottInG AGAInst us?

 Thankfully, neural networks would make a resurgence. The mood
started to change again in 1982 when John Hopfield presented the
Hopfield Net at the National Academy of Sciences. Also, at around
this time, Japan announced a fifth-generation computer project aimed
at bolstering national research in artificial intelligence, including neural
networks. This was announced at the U.S.-Japan Joint Conference on
Cooperative/Competitive Neural Networks, reinvigorating the U.S.
Defense Department’s interest in neural network research. Funding
soon started to flow again in an effort to maintain the United States’
technological edge in the face of Japanese advancements. Periods of
inflated expectations and funding followed by disillusions and dried-up
funds would continue into the 1990s and early 2000s. In 2012, Alex
Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, of the University
of Toronto, authored a paper titled “ImageNet Classification with Deep
Convolutional Neural Networks” that helped reignite interest in AI,
which has maintained to the present, and this time it promises to endure
a bit longer. Neural networks are already solving real-world problems, and
although what their future looks like and what they might still be capable
of are subject to much speculation, the solutions they are providing
will continue to serve as fertile ground for sustained development. The
hype situation has not improved much over the past few decades, but
something unexpected has facilitated neural networks’ persistence, in full
research fury, almost a decade after being rediscovered.
 So what changed in 2012? In the 1960s, researchers knew that if you
stacked a series of single-layer perceptrons and created a more complex
network known as the multilayer perceptron (MLP), you could solve
nonlinear problems. The problem, as Minsky pointed out at the time,
was that the process of training the network—in other words, finding
the correct value for each connection weight—would take hundreds or
thousands of years of computational time, which made it impractical.
Computers were much more limited, however, in the 1960s. Also,
researchers were thinking of computations as happening within CPUs.
CPUs are the main processing component of a computer system, and we

 PoLArIZAtIon AnD Its ConsEQuEnCEs 39

can think of instructions executing in CPUs as executing sequentially.
That is, if we want to perform ten operations, the CPU starts with the
first operation, proceeds to the second operation, and so on. When
the problem we are trying to solve consists of performing millions of
computations (as is the case with complex neural networks), if these
computations are done sequentially, the time required to train the network
will make it impractical even for the fastest modern CPUs. Still, as CPUs
became more powerful in the late 1990s and early 2000s, some large CPU
clusters known as supercomputers were able to crunch vast numbers of
computations, and research into neural networks slowly picked up again.
Considering that not everyone has access to a supercomputer, however,
neural networks remained at the fringe of artificial intelligence research.
Luckily though, advancements in a completely different industry were
about to pull the humble neural network out of the periphery and place
it right into the mainstream.

The gaming industry had been pushing graphics processing
unit (GPU) companies to produce faster and more efficient GPUs
since the first pixelated computer games appeared in the 1980s. One
interesting thing about computer graphics is that operations happen at
the pixel level. If we think of a computer game from a pure graphics
perspective, what we are looking at is a series of frames that must be
drawn on a screen. (Like a still from a movie, a frame is the image
that fills your screen and shows the evolving scene.) The frames are
made of thousands (or millions) of pixels. Increasing performance and
efficiency in computer graphics means creating processors that can
parallelize the work that’s necessary to draw those pixels. This meant
that in 2012 the most powerful processors people could access outside
of supercomputers weren’t CPUs; they were GPUs. For the work we
need to perform to train a neural network, we can think of CPUs
and GPUs as powerful calculators. The difference between the CPU and
the GPU is that the CPU performs all its calculations sequentially, and
the GPU can perform thousands of operations in parallel; therefore, a
GPU can process a set of operations much more quickly than a CPU.

40 Is tHE ALGorItHM PLottInG AGAInst us?

Krizhevsky, Sutskever, and Hinton were aware of this when they
set out to train a complex neural network using a GPU. Their neural
network implementation, named AlexNet, competed in the ImageNet
Large Scale Visual Recognition Challenge in 2012 and achieved state-
of-the-art results when compared with any image recognition model
that year. It is important to note that, along with advancements in
GPUs, ImageNet itself was another equally important benefit that
Krizhevsky, Sutskever, and Hinton enjoyed in 2012, which did not
exist decades earlier. In 2006, Fei-Fei Li, at that time a researcher at
Princeton University, began working on an interesting project to build
a vast data set of natural images along with annotated labels. The label
of an image describes the subject of that image and can be used to teach
AI models to correctly classify images according to their labels. Thus,
this data set presents an invaluable tool for training AI models in visual
recognition tasks. Today, ImageNet has over 14 million annotated
images, and it is a keystone in the development of many computer-
vision applications.

Interestingly, the architecture of AlexNet was similar to a
convolutional neural network (CNN) proposed by Yann LeCun in
1989. Unfortunately, in 1989 LeCun didn’t have access to ImageNet
or a GPU powerful enough to train a deep (many-layered) model.
What GPUs did, though, was democratize access to powerful
calculators that could perform thousands of operations in parallel.
Practically anyone can afford a GPU and set up a system to train
a neural network. Suddenly, progress could be made in every lab,
without running into bottlenecks when trying to access specialized
supercomputers. This, along with ImageNet and similar data sets
created by researchers with the help of the internet, allowed for an
explosion in neural network research: all sorts of existing architectures
were explored, and new architectures also emerged. AlexNet is a
CNN, and we look at CNNs in the next chapter when we discuss
computer vision in detail. Now we examine the model that started it
all: the multilayer perceptron.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 41

PEELING BACK LAYERS

We have seen how single neurons work. We learned about their history
and how different discoveries helped transform the design of artificial
neurons. Now we want to see how neural networks function. We want
to design a network that’s made up of several layers of artificial neurons,
and we want to understand what happens at each neuron.

Let’s consider a simple MLP, also known as a fully connected
neural network. We can create a simple model with three input nodes,
followed by a four-neuron layer, followed by a two-neuron layer, and
ending with a single output neuron (fig. 1.14). The layers between
the input and the output—that is, the meat of the neural network—
are called the hidden layers. As noted in the introduction, the term
deep learning, or deep neural networks, refers to neural network models
that have more than one hidden layer. In our case, the model we are
discussing has two hidden layers.

O

I1

I2

I3

h1
1

h2
1

h3
1

h4
1

h1
2

h2
2

Figure 1.14 A multilayer perceptron (MLP) with two hidden layers. Three input nodes
are connected to the first hidden layer (h1), and h1 is connected to the second hidden
layer (h2), which is connected to the output neuron.

42 Is tHE ALGorItHM PLottInG AGAInst us?

The first hidden layer, the one with four neurons, we are going to
call h1, and the second hidden layer we are going to call h2. MLPs are
also known as fully connected neural networks because each neuron
of every layer is connected to every neuron of the next layer. Input
node I1 is connected to h1

1, h2
1, h3

1, h4
1. Input node I2 is also connected

to h1
1, h2

1, h3
1, h4

1, and so is input node I3. Then, the output of h1
1

is connected to h1
2 and h2

2. The output of h2
1 is connected to h1

2
and h2

2, and so are the outputs of h3
1 and h4

1. The output of h1
2 is

connected to the output neuron O, as is the output of h2
2 (fig. 1.14).

The output of each neuron depends on the values of each connection
associated with it and an activation function. We call the values
for each neuronal connection weights, and the activation function
dictates the range of values that the neuron can output (or in some
cases, it may limit the output of a neuron until a certain input value
range is crossed).

The purpose of an activation function is to introduce nonlinearity
into the calculations the neural network is performing. We discuss
why nonlinearity is important in the section below on vector spaces.
For now, we can just recall that biological neurons exhibit similar
nonlinear behavior. Hebb showed that the relationship between the
input signals at the dendrites and the output signal at the axon does
not follow a linear path, where the output value is simply the sum
of the input signals. The output of the neuron is regulated by some
internal function that considers the input signals and transforms
them by some process. The artificial neurons in our model emulate
this process by using mathematical activation functions. Researchers
have come up with many activation functions, and depending on the
problem we are trying to solve, certain activation functions are better
suited than others. Two popular activation functions are the sigmoid
and the rectified linear unit (ReLu) activation functions. The sigmoid
function outputs values between 0 and 1, so it’s widely used for use

 PoLArIZAtIon AnD Its ConsEQuEnCEs 43

cases where we want the neural network to output a probability;
probabilities range between 0 and 1, with 1 as the maximum value
we can achieve (a 100% chance). The ReLu activation function is
one of the most popular activation functions in use today. It simply
looks at the input value, and if it’s a negative value, it outputs a 0;
if it’s a positive value, it outputs the input value. For the following
example, we use the ReLu activation function for all neurons except
the output one. This is a common approach for binary classification
neural networks (binary classification means separating data samples
into two possible classes, e.g., cat vs. dog). For the output neuron,
we use the sigmoid activation function to ensure that the output can
be interpreted as a probability. Now let’s see how information flows
through the neural network.

To start, we calculate the output of the first neuron in h1. We are
going to presume that the neural network has already been trained,
and we have the weight values for each connection (fig. 1.15). Let’s
assume the input vector we want to process is I = [0.2, 0.01, 0.4].

O

I1

I2

I3

h1
1

h2
1

h3
1

h4
1

h1
2

h2
2

0.2

—0.1

0.
25

—
0.

030.01

0.4

Figure 1.15 The weight values of the connections to h1
1. Note that we have removed

the connections to the other neurons in h1 only for visibility reasons.

44 Is tHE ALGorItHM PLottInG AGAInst us?

We then execute a weighted sum operation between the input vector
and the connection weights:

h1
1 = ReLu(w1,1

1
 I1 + w1,2

1I2 + w1,3
1I3)

= ReLu(–0.1*0.2 + 0.25*0.01 + (–0.03*0.4))

Recall that ReLu functions output 0 for negative values.

= ReLu(–0.0295)

= 0

We calculate the output of the second neuron in h1 in the same
fashion (fig. 1.16).

O

I1

I2

I3

h1
1

h2
1

h3
1

h4
1

h1
2

h2
2

0.2 0.21

0.3

0.10.01

0.4

Figure 1.16 The weight values of the connections to h2
1 (as in fig. 1.15, simplified

for visibility).

h2
1 = ReLu(w2,1

1
 I1 + w2,2

1I2 + w2,3
1I3)

= ReLu(0.21*0.2 + 0.3*0.01 + 0.1*0.4)

= ReLu(0.085)

= 0.085

 PoLArIZAtIon AnD Its ConsEQuEnCEs 45

The output of the third neuron (fig. 1.17):

O

I1

I2

I3

h1
1

h2
1

h

h

3
1

4
1

h1
2

h2
2

0.2
0.65

2.4

—0.0250.01

0.4

Figure 1.17 The weight values of the connections to h3
1.

h3
1 = ReLu(w3,1

1
 I1 + w3,2

1I2 + w3,3
1I3)

= ReLu(0.65*0.2 + (–0.025)*0.01 + 2.4*0.4)

= ReLu(1.1)

= 1.1

The output of the fourth neuron (fig. 1.18):

O

I1

I2

I3

h1
1

h2
1

h3
1

h4
1

h1
2

h2
2

0.2

0.01

0.4

—
0.01

0.0018

—2.9

Figure 1.18 The weight values of the connections to h4
1.

46 Is tHE ALGorItHM PLottInG AGAInst us?

h4
1 = ReLu(w4,1

1
 I1 + w4,2

1I2 + w4,3
1I3)

= ReLu(–0.01*0.2 + 0.0018*0.01 + (–2.9)*0.4)

= ReLu(–1.16)

= 0

Now that we have the output of each neuron from h1, these values
become the inputs into the second layer, h2 (fig. 1.19). To calculate
the output of the first neuron of h2, we proceed as follows:

O

h1
1

h2
1

h3
1

h4
1

h1
2

h2
2

0

0.085

1.1

0

 —0.115

—0.21

—2.5

—
3

Figure 1.19 The inputs and weight values of the connections to h1
2. Note that each

input into layer h2 is the output of h1 [0, 0.085, 1.1, 0], which was calculated in the
previous steps.

h1
2 = ReLu(w1,1

2
 h1

1 + w1,2
2

 h2
1 + w1,3

2 h3
1 + w1,4

2 h4
1)

= ReLu(–0.21*0 + (–0.115)*0.085 + (–2.5)*1.1 + (–3)*0)

= ReLu(–2.75)

= 0

 PoLArIZAtIon AnD Its ConsEQuEnCEs 47

The output of the second neuron in h2 (fig. 1.20):

O

h1
1

h2
1

h3
1

h4
1

h1
2

h2
2

0

0.085

0.15

0.28

0.68

2.79
1.1

0

Figure 1.20 The inputs and weight values of the connections to h2
2.

h2
2 = ReLu(w2,1

2
 h1

1 + w2,2
2

 h2
1 + w2,3

2 h3
1 + w2,4

2 h4
1)

= ReLu(0.15*0 + 0.28*0.085 + 0.68*1.1 + 2.79*0)

= ReLu(0.77)

= 0.77

Finally, the output of the neural network is calculated using the

outputs of h2 as inputs to the output neuron (fig. 1.21).

O

h1
2

h2
2

0

0.77

1.25

2.18

Figure 1.21 The output of h2 as the input into the output layer, along with the
connection weights to the output layer.

48 Is tHE ALGorItHM PLottInG AGAInst us?

Note that for the output layer, we use the sigmoid activation function in
this example. The sigmoid function takes the following form:

O = sigmoid(w1,1
3

 h1
2 + w1,2

3
 h2

2)

= sigmoid(1.25*0 + 2.18*0.77)

= sigmoid(1.68)

=

= 0.84

 That’s it—we did it! We started with an input and a set of
predetermined weights, and we processed the input using the neural
network and got a result. The sigmoid activation function looks a bit
complicated, but we don’t have to dwell on it too much. We just need
to know that it takes a value as an input and produces an output that’s
between 0 and 1, which can be interpreted as a probability. At this stage
in our progress, we still don’t know how to interpret the output value,
but that’s OK. The purpose of this exercise was to show the operations
taking place inside a neural network. Although we are not yet sure
what 0.84 means or how it can be useful to us, we have now seen the
operations that produce an output, and we can see that they are simple
operations. There is no magic happening in the individual calculations
themselves; for the most part, we are just performing multiplications
and additions. These multiplications and additions between the inputs
and the weights of the neuron connections are what we call a weighted
sum operation, and these operations are the fuel that powers the
predictions in artificial neural networks.

In common parlance, we call the output of a neural network a
prediction. This is because, in a general sense, what the neural network
is doing is outputting a value that has a certain probability of being
correct. Based on previous data that the network saw during training,

 PoLArIZAtIon AnD Its ConsEQuEnCEs 49

the neural network builds a certain model of the world. When we
present it with a new input, it outputs a prediction. In classification
use cases, the prediction is typically a probability that the input belongs
to a particular class of objects. Not all the use cases where we employ
neural networks today are classification problems, however; some are
regression problems (a type of forecasting problem), where the neural
network predicts a numerical outcome for some input data.

Now we have seen what a neural network’s execution looks like;
we’ve taken that plunge into the cold water. Next, we can ask the
question, how can we use these tools to solve real-world problems? To
answer it, we will step out of the pool and gradually ease back in with
a couple of examples. First, we look at classification examples, and later
we look at a regression example.

CLASSIFICATION USE CASES

Suppose we have the following task: a Hollywood production studio
hires us to implement a tool that can scan movie reviews from users
in some message forum and decide whether the reviews are positive or
negative. This is a classification problem. We have some data—in this
case, a few lines of text from a movie reviewer describing their thoughts
on the movie—and we need to create a tool that can analyze that data
and tell us whether it’s a positive review or a negative review.

If you take a moment to think about this problem, you’ll realize that
it’s not as simple as it might initially seem. Naively, we might suggest
to simply look for some key words—bad, good, and OK—and decide
that the review is either positive or negative based on the occurrence of
those key words. If we take such a simplistic approach, we quickly realize
that the problem is more nuanced than this. Consider the following
sentences: “I was worried that this movie was going to be terrible. I was
wrong.” Clearly this is a positive review, but it has two negative words in

50 Is tHE ALGorItHM PLottInG AGAInst us?

it: terrible and wrong. Now consider these: “The greatest thing about this
movie was when it ended. Even the best actors couldn’t save it.” This is
an example of a negative review that has a few generally positive words
in it: greatest and best. It’s evident that we can’t simply look at the words
in isolation; we must consider the body of the text and the relationship
each word has with every other word in the text.

These types of problems belong to the natural language processing
(NLP) field of research, and neural networks are the best models we
have for solving NLP problems today. When you ask Alexa to order
that new pair of socks or tell Google Home to play a different song,
an NLP neural network is processing your speech and making sense of
your commands. So how do we solve the movie-review problem? How
do we teach a neural network what makes a positive review?

The first thing we must do is get hold of a training data set. In this
case, a training data set is simply a large collection of movie reviews that
we can present to the neural network to train it on what positive and
negative reviews look like. A training data set typically has thousands of
samples; in our case, a sample is a single movie review. A training data
set also has unique pieces of information called labels. Since we want to
train our model to learn the meaning of positive and negative reviews by
looking at a large number of training samples, the samples must contain
classification labels that say “positive” or “negative” for each review. These
labels are typically produced by humans—researchers and volunteers—
who painstakingly label thousands of samples from training data sets.

We have been hired to create a tool that can classify movie reviews.
We construct a neural network that can take bodies of text as inputs
and then output a classification: positive or negative. We must find
a training data set that we can use to train our newly created model.
Thankfully, Stanford University publishes a data set of labeled movie
reviews scraped from the IMDb (Internet Movie Database) website.
The data set, which is freely available to everyone, contains 50,000
samples of movie reviews split into 25,000 training samples and 25,000

 PoLArIZAtIon AnD Its ConsEQuEnCEs 51

testing samples. Training data sets are typically split into training and
testing samples. When we are training the neural network, we want it
to learn from the training data, but we don’t want it to “memorize” the
training data. If the neural network learns the correct answer for each
training sample by memorizing the training samples, that doesn’t really
tell us how well the network will perform in a real-world situation. The
testing samples help us gauge whether the neural network has truly
learned information that can be applied to unseen data or if it’s simply
memorizing our training data.
 As we saw in our simple example above, neural networks are
mathematical systems that work with numbers. They expect numbers
as inputs, transform those numbers using mathematical operations, and
output numbers. Part of our work in designing a neural network model
to solve a problem is to figure out how we can represent, or encode, our
data as numbers. Suppose we have the following review: “The movie
was extremely good.” How do we convert this sentence into a set of
numbers? Computer scientists and statisticians have developed a few
ways to achieve this.

One way is to first come up with a dictionary (or vocabulary) of
words used by the reviews in the training data set. We can create a list
of all words used by all the reviews in the data set. Then we identify
the most frequently used words in the reviews. For example, suppose
we produce a list of 80,000 words used by the movie reviews. We can
select the 10,000 most frequently occurring words in the reviews and
create a vocabulary of 10,000 words. Each word in this vocabulary is
unique, meaning that it occurs only once in the list, and each word
has an index associated with it. The first word has an index of 1, the
second word has an index of 2, and so on. Let’s recall the sentence
we want to analyze: “The movie was extremely good.” We can break
the words into a vector: [The, movie, was, extremely, good]. Next, we
check the index of each word in the list of 10,000 words and replace
the words in the vector by their indices. But as we are doing this, we

52 Is tHE ALGorItHM PLottInG AGAInst us?

notice that the word extremely doesn’t appear in the list of 10,000
words we have created. That means that the word extremely isn’t used
frequently enough in our training data set, and it is not part of our
vocabulary, so we can discard it. The vector then becomes [The, movie,
was, good]. When we use the indices of each word in the 10,000-word
list, the vector becomes [10, 4, 22, 100]. We can interpret this vector
as follows: the word the is the 10th word in the list, the word movie is
4th, the word was is 22nd, and the word good is 100th. Now we have
managed to convert our review into a set of numbers, a necessary step
because our neural network needs numbers to process information; we
are well on our way to being able to ask our model to predict whether
this review sample is positive or negative. But we can’t do it just yet; we
must make one more modification.

Since neural networks are dealing with numbers, we want the
range of values for all inputs to be roughly the same; this is called
normalizing the data. For example, suppose we have a set of reviews
that happen to use words found toward the top of the vocabulary list.
That is, all the words in these reviews have indices of less than 100.
This would create a word vector where all values are less than 100.
Then, suppose the next set of reviews comprises mostly words found
in the bottom half of the 10,000-word list. Say the vectors consist of
values that are greater than 8000 (e.g., [8001, 9245, 8444, 9001]).
Recall the way that inputs are processed by the neurons in the network.
We use the input values and perform a weighted sum operation over
the neuron’s connection weights, and the result of this operation gets
modulated by the activation function of the neuron. High values and
low values inputted into a neuron affect the output of that neuron
differently. We don’t want the output of the network to be skewed based
on which portion of the list the review words came from, because that
information may not have anything to do with the actual sentiment of
the review. We want the network to learn what makes a review positive
or negative. This requires the network to learn the semantic meaning

 PoLArIZAtIon AnD Its ConsEQuEnCEs 53

of each word and the relationship between words in the vocabulary.
The positions of the words within the vocabulary list, however, were
arbitrarily chosen. When we created the vocabulary of 10,000 words,
we did not organize the words in any meaningful way; therefore, we
don’t want the network to learn to weigh words differently based on
the portion of the list they came from, which would certainly happen
if some indices were much larger than others.

One way we can normalize the input vector so that the values for
all words exist in the same range is known as one-hot encoding. That is,
instead of the 4-dimension (four-valued) vector [10, 4, 22, 100] for
“The movie was good,” we create a 10,000-dimension vector, where
we place a 1 at the index in the list for each word that appears in the
review, and we place a 0 for words in the list that don’t appear in the
review. This would produce a vector of 10,000 values that looks like
this: [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, . . . (eleven 0s), 1, . . . (seventy-seven
0s), 1, 0, 0, 0, . . . (zeros all the way to the 10,000th place)]. It might
seem complicated, but it really isn’t. We have placed a 1 at the 4th
place in the vector, a 1 at the 10th place in the vector, a 1 at the 22nd
place, and a 1 at the 100th place. Everywhere else we have placed a 0.
Now we have a method for encoding reviews as vectors of values that
can be presented to a neural network for analysis. This vector encodes
information about the words in our review but does not place more
weight on a group of words versus another based on where in the list
they appear. The vector is normalized, and all values are 0 or 1.

There is an advantage to using this one-hot encoding method,
which is that all input vectors—that is, all reviews—will result in
the same vector size. For example, we might have different reviews
consisting of different lengths of text, but the process we are describing
for generating the input vector will generate vectors that are all the
same size: 10,000 values. As we will see, this is important because our
neural network needs to know how many values are in the input, and
the number of values cannot vary between samples.

54 Is tHE ALGorItHM PLottInG AGAInst us?

The astute reader may be noticing a few potential problems with
this method of encoding our input data. By choosing a vocabulary
that is significantly smaller than the number of words in the body
of the training data set (and in the English language in general), we
have conceded that some words will be discarded from our reviews.
These are the words that appear least frequently in the training data
set. How do we know that we are not discarding valuable information?
Furthermore, the one-hot encoding method we described has a flaw.
Suppose that the word good appears three times in the review. With the
proposed encoding method, we can only encode each appearing word
once, as there is only one index for the word good in the list. Thankfully,
the problem we are trying to solve is to classify the review as a negative
or positive review. We are not trying to provide a degree of positivity
or negativity (because it wasn’t asked of us). For example, our model
does not have to classify the review into “good,” “great,” “greatest,”
or “bad,” “terrible,” “worst.” This means that losing such information
as how many times the user said this movie was “good” may not be
as important. But in general, these are all valid concerns. And there
are other more complex methods of encoding information that avoid
some of these issues and help encode word frequencies that would be
necessary for multiclass classification, where we want to predict degrees
of sentiment as opposed to a binary case of positive or negative. Even
with the downsides we have discussed, however, this method still works
pretty well and can produce really good results for binary classification
tasks like the one we are discussing.

All right, so now we have our input vector. What do we do next?
We present it to our neural network model. Let’s define an architecture
for a neural network model capable of solving this problem. We can
design a neural network that has an input layer, two hidden layers, and
an output layer. The input layer will accept 10,000 values. The first
hidden layer will consist of 32 neurons with a ReLu activation function.
The second hidden layer will consist of another 32 neurons also with

 PoLArIZAtIon AnD Its ConsEQuEnCEs 55

a ReLu activation function. Can you guess how many neurons will be
needed for the output layer? The output layer will consist of 1 neuron,
and it will have a sigmoid activation function. It is important that we
choose a sigmoid activation function for the output neuron because we
want the output to be a probability. That is, we want the output to tell
us the likelihood that the review is either a positive review or a negative
review, and sigmoid functions output values in the range of 0 to 1,
which can be interpreted as a probability. If this is not clear yet, don’t
worry; it should be made clear soon enough.

Let’s discuss the architecture of the neural network. We are choosing
the ReLu activation function for the neurons in the hidden layers. ReLu
functions are simple: they take an input value; if the value is negative,
they output a 0, and if the value is positive, they output the same value
(i.e., the input value). The reason we are using the ReLu activation
function is that, for most artificial neural network architectures and for
most use cases today, researchers have empirically determined (by trial
and error) that ReLu functions work best. For a long time, sigmoid
functions were very popular, but ReLu functions have a property that
makes the training process easier, so over time most researchers started
adopting the ReLu function. The more interesting question is why
ReLu functions work so well, and unfortunately the answer isn’t exactly
known. As the famous AI researcher Geoffrey Hinton once put it (and
I am paraphrasing), “This is all made up.”

Some of what we do in artificial neural networks is inspired by
biological systems; as we know, biological neurons have internal states
that cause them to output signals based on inputs but in a nonlinear
way. That is, the strength of the output signal isn’t always proportional
to the strength of the input. ReLu, sigmoid, and other mathematical
functions help add nonlinearity to artificial neurons, but that’s where
the similarities to biological systems stop. We do not yet have a deep
enough understanding of biological systems to form a framework that
allows us to find the appropriate activation function for an artificial

56 Is tHE ALGorItHM PLottInG AGAInst us?

neuron. Instead, researchers try different ideas empirically and keep
the ones that work. Answering the question of how we choose the size
of the hidden layers—how many neurons we want per layer—is also
more of an art than a science. There isn’t a set of rules that prescribe
a specific number of neurons for a given problem. Over decades of
research, some intuition has been built. There is a correlation between
the size of the input, the size of the training data set, and the general
range of neurons we should use, but no formula will tell us how to
design the network. Again, much of this has been learned empirically.
Researchers try different architectures and test their models, and then
they adjust them when the systems don’t work right away.
 We have designed a neural network model and a process we
can use to encode the input data into numbers that we can feed the
neural network. We selected a sigmoid activation function for the
output layer because we want to interpret the output as a probability.
So how does that work exactly? How do we interpret the output of
the neural network we have built? Recall that the goal of our neural
network is to classify the input—a movie review—into one of two
classes: positive or negative. As we know by now, neural networks
only understand numbers. Therefore, we need to encode the classes
“positive” and “negative” using numbers. We can do that by assigning
to the class “positive” a label of 1 and assigning to the class “negative”
a label of 0. We could certainly do the reverse: we could say the
class “negative” is 1 and the class “positive” is 0; we just need to
be consistent in our data set. When the neural network outputs a
value that’s between 0 and 1—because of the sigmoid function—we
interpret that value as a confidence level that the input belongs to
class 1 or 0. For example, suppose the network outputs 0.78, and we
have established that a label of 1 means a positive review. This output
tells us that the neural network is 78 percent confident that the review
is positive. That is, based on the training data, there is a 78 percent
probability that the review it’s currently analyzing is a positive review.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 57

Similarly, an output of 0.5 means there is a 50 percent chance of the
review being positive.

We should take a moment to appreciate the importance of what
we have accomplished. We have just taken an input sequence of text,
converted it into a format that a mathematical model—the neural
network—could analyze, determined how to design a neural network
that can classify text into different categories by learning to pick up on
emotional cues (this type of classification where we try to understand the
mood of the author is also called sentiment analysis), and learned how to
interpret the output of the neural network. We have seen that the process
of solving this problem, while not intuitive, is surprisingly simple when
we break down the set of operations. It’s all just a set of multiplications
and additions, with activation functions thrown in the mix.

The task of performing sentiment analysis was, for a long time, a
very difficult problem to solve. As we saw, text isn’t a simple sequence
of words where every word has the same weight. Some words are
more important for conveying the intent of a sentence than others,
and words tend to have intricate relationships (e.g., a word close to
the start of a sentence might emphasize the meaning of a word far
away). Consider the sentence “It is interesting that in some countries,
especially in tropical regions, rain falls for most of the year.” The word
“interesting” strongly relates to the word “rain” and the fact that it falls
for “most of the year.” Look at how many words we had to skip to get
to the meaningful part of the sentence. Then consider the sentence “It
is hard to explain what makes a movie interesting.” In this case, the
relationship is very close. The word “interesting” is directly related to
its immediate neighbor, “movie.” These nuances make it difficult to
develop a set of hard rules in the form of “if this pattern, then that
choice,” which is how more classical intelligent systems were built.
The reason neural networks are so powerful is that we don’t need to
explain to them what makes a review positive or negative—which is
difficult because we have a hard time writing down general rules for

58 Is tHE ALGorItHM PLottInG AGAInst us?

those problems. (Give it a shot and see for yourself: try to write a set
of rules for describing what makes a sentence positive, and try to apply
those rules to a set of random posts.) Instead, neural networks learn to
identify these rules for themselves. Take a minute and marvel at that!

As we were introducing the execution process of the neural
network and learning to interpret the input and output, we skipped
over a very important part: the training. In this chapter, we very briefly
explain neural network training. Then, over the next two chapters,
we gradually expand on our knowledge base and dive deeper into the
training process. As we have seen, the execution process of a neural
network is quite simple, and the mathematics used barely approach the
high school level. The training process is a different story.

Why do we need training in the first place? In our examples thus
far, we have used the weights of the connections between the network’s
neurons as if they had been magically preset to the appropriate values
to provide the correct outputs. But unfortunately, this is not how
neural networks begin their life. Initially, before the neural network is
trained, the weights of the connections are randomly initialized, so the
predicted output is largely inaccurate. It is only through the training
process that the weights are adjusted until eventually the predicted
output starts to make sense. The weights of the model represent the
learned information. We start with a randomly initialized set of weights
and a training data set. The data set is a collection of samples from the
problem domain. For example, if we want to train neural networks
to distinguish between apples and bananas, the data set must contain
a diverse number of apple and banana images. If we want the neural
network to distinguish between positive and negative reviews, we
need the data set to contain samples of positive and negative reviews.
During training, the neural network is presented with a sample from
the training data set.

In an image classification example, a training sample is a single
image from the data set; in a sentiment analysis example, such as our

 PoLArIZAtIon AnD Its ConsEQuEnCEs 59

movie-review problem, a training sample is a single review from the data
set. We present the training sample to the neural network, and it predicts
an output. Because the neural network is not yet trained, the prediction
is going to be inaccurate; for example, it might say that a highly positive
review is negative. Since this is a training sample, the sample has a label
that tells us its true class; the label will say “positive” for a positive review
or “negative” for a negative review (remember: the labels are numbers,
so 1 for “positive” and 0 for “negative”). We then use a mathematical
formula to calculate how wrong the current predictions got it. That is,
we calculate how far the predictions of the neural network are from the
actual labels, and we use that calculation to adjust the weights of the
model so that the next time the model sees this sample, it gets a little
closer to the truth. During training, we perform this operation for each
sample in the data set and for many cycles, or epochs (i.e., cycles where
the neural network sees each sample once). The training process typically
lasts many epochs, so the model sees each sample in the training data
set multiple times, each time extracting a bit more information and
transferring that knowledge to the network’s weights.

Let’s look at another classification example, this time from the
vision domain. In the early 1990s, a significant amount of research
went into creating algorithms for recognizing handwritten digits from
U.S. mail envelopes. The training data set for this example consists of
50,000 handwritten digits. This classification problem has ten classes as
we need the model to learn to distinguish between ten classes of digits:
0–9. The images of handwritten digits in this data set have a resolution
of 28 × 28 pixels. In the sentiment analysis example, we converted the
review samples into vectors where each word represented a different
dimension of the vector. That is, for a review consisting of ten words,
we produced a vector of 10 values, which we then converted into a one-
hot encoding vector of 10,000 values. For image classification, each
pixel is a different dimension of the input vector, so for images of 28
× 28 pixels, we produce a vector of 784 values (28 × 28 = 784), where

60 Is tHE ALGorItHM PLottInG AGAInst us?

each value represents the light intensity of the pixel: a value of 0 means
a black pixel, a value of 1 means a white pixel, and any value in between
represents a grayscale. Now that we have defined the input vector, we
can proceed to design a neural network to classify handwritten digits.

We start with the input layer having 784 nodes, one for each pixel
of the input vector. Next, we add a layer of 512 neurons with ReLu
activation, followed by a layer of 64 neurons also with ReLu activation.
Finally, we add an output layer of 10 neurons with a softmax regression
function. The design choice of a 512-neuron layer and a 64-neuron
layer is again driven by intuition and trial and error. Typically, we
iterate over a few designs until we find one that’s efficient (in terms of
number of parameters) and performs well.

We have not discussed softmax regression functions yet. You
can think of them as similar to a sigmoid function but for multiclass
problems. Whereas a sigmoid activation function is used for binary
classification problems with the intent of outputting a probability that
the input belongs to a single class—cat vs. dog, apple vs. banana—
softmax regression functions convert the output of the neural network
into a probability where all outputs sum to 1. For example, our
network has ten outputs, one for each possible class of the input digit:
0–9. For a given input image, the network might output the following
ten values: 0.80, 0.1, 0.0125, 0.0125, 0.005, 0.0025, 0.0168, 0.0168,
0.017, 0.0169. This result tells us that the network is 80 percent
confident that the input value represents a 0, 10 percent confident that
it represents a 1, 1.25 percent confident that it represents a 2, and so
on. If we sum all the output values together, we get 1. We can train this
neural network on the 50,000 training images for five epochs. That is,
the network will run through the training data set five times as it learns
to predict the correct label for each image. After about five epochs of
training, a neural network like this one can achieve around 98 percent
accuracy in its predictions, meaning that the neural network correctly
predicts the class of an input digit 98 percent of the time. This is quite

 PoLArIZAtIon AnD Its ConsEQuEnCEs 61

remarkable considering that, before neural networks, no other image
recognition algorithm came even close to that level of accuracy.

Why is an algorithm like this useful? In a practical sense, we can
employ an algorithm like this at a sorting facility for the postal service.
We might build an assembly line of sorting machines that receive a
long stream of mail envelopes. The sorting machines can then look
at the envelopes, recognize their zip codes, and sort the envelopes
according to distribution regions. And there is another way that this
algorithm is useful: it shows us that it’s possible to build systems, with
relative ease, that can interpret images. Artificial vision systems were
considered among the most difficult areas of automation before neural
networks, so developing an algorithm that could recognize an image
and interpret it was a tremendous achievement. It gave researchers a
sense that computer vision might yet be possible. We discuss more
about computer vision and state-of-the-art vision algorithms in the
next chapter, and in the process, we will discover a new neural network
architecture that avoids a crucial problem with our humble MLP. For
a 28 × 28 pixel image (a very small resolution, impractical for most
real computer-vision use cases), we needed a neural network with 784
input neurons, which in turn set the stage for roughly the same number
of neurons in the subsequent layers. Consider the size of a neural
network required for resolutions of a few thousand pixels. It quickly
becomes very difficult to process images using MLPs in this manner
because we need larger MLPs with more and more neurons, which
require dramatically more memory to process the input images. When
we discuss computer vision, we will see a different type of network that
manages to solve the vision problem with considerably fewer resources.

REGRESSION USE CASES

Classification problems, such as sentiment analysis and image
recognition, are common use cases for neural networks. Another popular

62 Is tHE ALGorItHM PLottInG AGAInst us?

use case, regression problems, involves the prediction of a continuous
value based on historical data. For example, we might have a data set of
previous transactions and valuations for a particular stock trading in the
stock market. We might want to create an algorithm that can analyze the
market data and predict a future price for a given stock.

Or let’s say that you are a project manager. You know your team’s
estimates for the number of hours required to complete a project are
usually not very good: sometimes they overestimate and finish the project
in half the time; sometimes they underestimate, and it takes much longer
to complete than expected. Both underestimating and overestimating
on projects contribute to the agelong struggle between management
and developers. This is especially true in software development, where
correctly estimating projects is notoriously difficult. It is obvious why
underestimating the hours needed to complete a project is bad. And it
might seem better to err on the side of overestimating, because if a project
is finished in less time than quoted, then everyone should be happy, right?
Unfortunately, it doesn’t work that way. When a project is scheduled, a
variety of resources are assigned to that project; if the project is then
completed in significantly less time than was originally allocated for it,
the effects ripple through other scheduled projects. Now management
needs to figure out how to reassign the suddenly freed resources. It also
probably means that the project was quoted to the customer at a much
higher price point than it should have been: do this too many times in a
row, and you start losing clients to competitors with lower price points.

It should be noted that the people doing the estimating are
often experienced employees who are doing their best. But the reason
estimating projects is so difficult is because of the number of variables
that can affect the completion of the project. Sometimes requirements
change halfway through the project. Sometimes, at the outset, the team
does not have all the information needed to complete the project, and
the information slowly trickles in as development progresses. In many
cases, implementing a particular feature is contingent on a third-party
company providing a key piece of equipment that inevitably gets delayed.
These are all variables the person estimating a project must contend with

 PoLArIZAtIon AnD Its ConsEQuEnCEs 63

and make assumptions about. Of course, you may say that all of this
can be easily avoided by never starting any project until the team has
absolutely everything they need. But this strategy would not be practical
in dynamic environments like software development or any technology-
based field. Innovation, almost by definition, requires uncertainty, and
uncertainty means that engineers often can’t predict all the problems
they are going to encounter until they do encounter them, so estimating
the time needed to fix the problems they haven’t yet encountered is not
an exact science.
 One possible solution to this problem of project estimation is a
regression algorithm. Provided that the management team has kept a
database with descriptive features of past projects and the actual time it
took to complete those projects, it might be possible to create a neural
network that can analyze the data and learn to predict duration for similar
future projects. If we recall from our previous classification examples,
features are dimensions of the data. In the case of sentiment analysis,
a sentence was converted into a vector of numbers, and each value in
the vector was a feature of that vector. In the case of handwritten-digit
recognition, the image was converted into a vector of pixel values, where
each value was a feature of the image. In the project estimation example,
a data sample would be a vector of features that describe a given project:
number of engineers assigned, experience level of engineers, number of
components this project depends on, time of year when the project is
running, and so on. And the label to predict would be the estimated
time—say, 160 hours. The difference between a neural network
algorithm and a human estimator is that the neural network algorithm
should be able to find patterns in the data and the relationships between
the features better than a human could. A human might be inclined
to put too much emphasis on a specific feature—for example, number
of engineers assigned—and estimate the time to complete the work
simply based on the number of engineers available. The neural network,
however, through the training process should be able to pick out the
predictive features for each individual project. In one case, the number of
engineers may indeed be the driving force behind the work estimation,

64 Is tHE ALGorItHM PLottInG AGAInst us?

but in another, the relationship between other features might be more
important. For example, the time of year when the project takes place
and the client company may be correlated: at a particular company, the
height of summer might be a time when most employees are on vacation,
so getting vital feedback from them might be delayed. These nuances in
the relationships among features that describe a project might be difficult
for a human to pick up, especially when the project vectors contain many
different features. But a neural network algorithm should pick up such
details with relative ease.
 Again, these types of forecasting algorithms are referred to as
regression algorithms. The simplest form of regression algorithm is one
that performs linear regression, which we discuss at great length in chapter
3. Linear regression is the process of trying to fit a line through a set of
data points and using the line as an estimator for future points. What a
neural network algorithm can do in a regression use case is automate the
process of finding that best-fit line (fig. 1.22). We are now going to walk
through a regression example and build a neural network estimator for
a specific regression problem. Our Hollywood movie-review gig is done,
and now we’ve been hired by a real-estate company. The company wants
us to build a model to help valuate houses in a given city.

Figure 1.22 A best-fit line (red line) running through a set of data points (blue dots).
We can use the best-fit line to predict the value for missing data samples.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 65

By now you know the drill. The first thing we need is a data
set of samples—vectors of data points that describe a house—with
their correct valuations. There is a data set well known to machine-
learning engineers: the Boston Housing Price data set, which describes
a set of houses and their prices for different suburbs of Boston in the
1970s. Each of its 506 data samples consists of a vector of fourteen
dimensions. That is, the data set comprises 506 houses, where each
house is described by a list of fourteen features (see table 1.4).

Table 1.4 Feature Description of the Boston Housing Price Data set

1 Per capita crime rate by town

2 Proportion of residential land zoned for lots over 25,000 sq. ft.

3 Proportion of nonretail business acres per town

4 Charles river dummy variable (1 if tract bounds river; 0 otherwise)

5 nitric oxides concentration (parts per 10 million)

6 Average number of rooms per dwelling

7 Proportion of owner-occupied units built prior to 1940

8 Weighted distances to five Boston employment centers

9 Index of accessibility to radial highways

10 Full-value property-tax rate per $10,000

11 Pupil-teacher ratio by town

12 B – 1000(Bk – 0.63)^2 where Bk is the proportion of Black residents by town*

13 LstAt: % lower status of the population

14 Median value of owner-occupied homes (in thousands of dollars)

*Note: Row 12 bears addressing, but to not break the flow of the current explanation, it will
be addressed immediately following the end of this chapter.

Each house in the data set is described by fourteen values referring to
criteria that are suspected to correlate with the price of a house (e.g.,
per capita crime rate in the town, number of rooms in the house, etc.).
The reason machine-learning algorithms such as neural networks are
useful tools for analyzing this type of data is that it’s very difficult for

66 Is tHE ALGorItHM PLottInG AGAInst us?

a human to look at each of those fourteen data points across hundreds
of houses and pick out the features that are most predictive of the price
of the house. Intuitively, we might guess that the number of rooms is
an important one, but how important is it compared to the location of
the house? And the pupil-teacher ratio in the area? The purpose of the
neural network is to learn these relationships from the data.

We can create a neural network for the present problem as follows:
The first layer contains 14 input nodes, one for each dimension of
the data. The next layer contains 64 neurons with ReLu activation,
followed by another 64-neuron layer. The next and last layer consists
of a single linear neuron. A linear neuron is simply a neuron that
calculates its output based on the weighted sum of the input and its
connection weights without any further processing by an activation
function (i.e., no threshold- or activation-related modulating). Recall
that each neuron in each layer is connected to every other neuron
in the following layer. The layout of the network is, as previously
discussed, fine-tuned through trial and error. All we know for certain
is that the first layer should contain 14 input nodes and the last layer
should contain 1 output neuron. We need 14 input nodes because our
input sample consists of a 14-dimension array. Similarly, we need 1
output neuron because all we want the neural network to do is output
the predicted price of the house; that is, we just need a single number
to be output. Instead of two hidden layers with 64 neurons each, we
could have chosen two hidden layers with 128 neurons each or one
layer with 128 neurons and the next one with 64 neurons. We could
have also chosen three hidden layers with 32 neurons each, and in all
cases the neural network would have learned to predict a price for the
house that represents, with varying degrees of accuracy, the training
data. Typically, we test different arrangements and choose the one that
performs best.
 Once we create a neural network, the process for training it
on a regression problem is similar to the process for training it on a

 PoLArIZAtIon AnD Its ConsEQuEnCEs 67

classification problem. The training data set, which in our case has
506 houses, also contains the target prediction for each sample in the
data set; in other words, for each vector of fourteen values describing
each house in the data set, we also have the true price for that house.
The training is split into many epochs (i.e., cycles where the neural
network sees all the samples in the data set at least once). At the start
of training, during the first epoch, the neural network’s parameters are
randomly initialized, so the price prediction for each house is not very
accurate. Thankfully, we have the true price of the houses, so we can
measure how far off the network’s predictions are from the true value
of the house. Using this information (and a lot of calculus), we update
the neural network’s parameters to minimize the difference between
the expected value and the predicted value next time through. Just as
we saw in the classification use case, over many epochs of training, the
neural network parameters (the connection weights) are updated and
tuned to predict the value of a house given a set of descriptors (the
features) for the house. The hope is that once the neural network is
trained, it has learned the relationship between the features describing
the house and the value of the house. Then we can show it a new house
that is not part of the training data set, and the neural network should
be able to predict the value of that house.

VECTORS AND VECTOR SPACES

We have now spent a bit of time discussing fully connected neural
networks and how we can build them to solve classification and
regression problems, the two most common types of problems in
artificial intelligence. We know how to build a network of neurons,
a layer at time, to accept an input vector and output either a single
value or some prediction vector. We have also said in passing that a
classification algorithm (which includes neural networks) can be
described as a line that separates graphed points in N-dimensional

68 Is tHE ALGorItHM PLottInG AGAInst us?

space. The points on one side of the line belong to one class, while the
points on the other side belong to the other class. Similarly, we have
said that regression neural networks can be thought of as a best-fit
line through a set of data points, where the line itself is a continuous
predictor for all data points in that N-dimensional space. The problem
with this explanation is that it’s not easy to visualize.

Suppose you want to differentiate between images of a handwritten
digit 1 and a handwritten digit 2. This “line separating points” analogy
surely can’t apply here, right? How can you think of images as “points,”
and then how can you use a line to separate images? It turns out that
you can indeed treat images—or any type of data samples, including our
houses and movie reviews—as points in some space. Typically, this space
is multidimensional, so we call it a hyperspace. And the neural network
is truly trying to find a line that separates these data points; however,
because we are dealing with many dimensions, instead of a line (which
separates points in two dimensions), we are trying to find a hyperplane.
To understand this process, let’s think back to our high school days and
recall what a vector is.

In 2D space, a vector can be described as follows: V = (X1, X2),
where X1 denotes the component of the vector in one dimension and X2
denotes the component of the vector in the other dimension. A vector
in 3D space can be described as follows: V = (X1, X2, X3), where again
X1, X2, and X3 describe the components of the vector in each of the
three dimensions. We can close our eyes and visualize a point in 2D
space with an arrow starting at the origin and ending at the point. This
is a 2D vector. We can also visualize a vector in 3D space as a point
floating somewhere in the 3D world with an arrow starting at the origin
and ending at the point (fig. 1.23). But can you visualize a vector in
4D space? Unfortunately, we can’t visualize spatial relationships beyond
three dimensions. But it turns out that the mathematics of vectors in
four dimensions are the same as the mathematics of vectors in two and
three dimensions. Although we can no longer visualize it, a 4D vector
mathematically looks like this: V = (X1, X2, X3, X4), just like a 3D vector

 PoLArIZAtIon AnD Its ConsEQuEnCEs 69

but with an extra dimension. Similarly, a 5D vector looks like this: V
= (X1, X2, X3, X4, X5). And an ND vector looks like this: V = (X1, X2,
X3, . . ., XN). So manipulating vectors in a multidimensional space is
similar to the process of manipulating vectors in 2D and 3D spaces,
which are much more intuitive to us. We simply have to account for the
extra dimensions.

X 1

X2

X 3

V1 = (X1, X2, X3)
V1 = (X1, X2)

X 1

X 2

Figure 1.23 A vector in 2D space (left) and a vector in 3D space (right). A vector is just
a point in some space with an arrow running from the origin to the point.

 How is this useful? Once again, let us consider a 28 × 28 pixel
image of a handwritten digit 1. To process this image through our
neural network, the first thing we did was turn the image into a vector.
We interpreted the color of each pixel as a number and then created
a vector of 784 (28 × 28) numbers. That is, we created a vector V =
(X1, X2, X3, . . ., X784) of 784 dimensions. Something very subtle and
extremely important is happening here. Conceptually, we went from
interpreting this image as a collection of 784 pixels of independent colors
to interpreting this image as a single point in a 784-dimensional space.
This constitutes a very important assumption. We are saying that the 784
pixels are not just randomly independent pixel values that happened to
resemble an image of a 1. Instead, we are saying that this image exists as

70 Is tHE ALGorItHM PLottInG AGAInst us?

a single point in a universe with 784 dimensions where each pixel value
constitutes a component of the vector in each of the 784 dimensions. If
we consider other samples of handwritten 1s, it turns out that these are
all single points in a 784-dimension virtual universe as well.
 And now for the really interesting bit. Vectors prove to have a
special property. We know that similar vectors point in roughly the
same direction, whereas vectors that are different point in different
directions. Using our intuition from 2D and 3D experiences, we could
imagine that in a 784-dimension world there is also an origin point,
and from this origin point, we could imagine that we have arrows going
all the way out to each of the points that constitute our handwritten
1s. Now, for fun, let’s throw in images of the digit 5. These are also 28
× 28 pixel images, so they exist in the same 784-dimensional universe
as our digit 1 images, but since they are a different digit, what would
you expect this to mean in terms of vector space? If you answered that
the digit 5 vectors would be pointing in different directions compared
to the digit 1 images, you are correct. You deserve a break: go get a
cold one! If you didn’t, then perhaps go back to the start of this section
and give it another try. This is an important concept that is central to
machine learning and artificial intelligence.
 Interpreting data samples as single vectors in some N-dimensional
space means that you can imagine samples of the same class to be
grouped somewhat together in that space and samples of a different
class to be grouped in a different direction. Now that we have a way of
interpreting data as groups of points, a classification algorithm simply
needs to find a hyperplane (remember: a line in 2D, a plane in 3D,
and a hyperplane in multidimensions) that bisects the vector space so
that points on one side of the plane belong to one class and points on
the other side belong to a different class (fig. 1.24). This is why vectors
are so useful. They help us interpret our data in a way that lets us apply
concepts from algebra and geometry to discover vital relationships
among our data samples.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 71

X1

X2

X3

Figure 1.24 Two classes of vectors in a 3D space separated by a hyperplane. The vectors
to the left of the plane (pointing to the purple points) belong to one class, and the vectors
to the right of the plane (pointing to the green points) belong to a different class. Why
is this useful? If we get a new sample and we do not know what class it belongs to, all
we need to do is interpret it as a vector and see on which side of the plane it falls; then
we can predict its class.

In this chapter, our goal was to gain some understanding of how artificial
neural networks work. It’s hard not to attribute mystical qualities to these
analytic tools, given their name. But as we are beginning to see, they are
simply mathematical constructs consisting of simple operations, mostly
multiplications and additions that are organized in sequential steps. (The
sequential steps, of course, are the layers of neurons stacked one after the
other.) We started the chapter learning about the history of artificial neural
networks and the first artificial neuron, the McCulloch-Pitts neuron. We
saw how the artificial neuron was inspired by our understanding of the
brain and how biological neurons process input signals. The McCulloch-
Pitts neuron, as the first incarnation of an artificial neuron, was a simple
construct. It performed the minimum possible duties to be considered
a neuron at all. As our understanding of biology progressed, helped by
research from scientists like Donald Hebb, we learned that all inputs
are not treated equally. There is a system of weights that can be adjusted
to emphasize the signals from some inputs over others. This research
from the field of biology made its way into the computer science field

72 Is tHE ALGorItHM PLottInG AGAInst us?

(although, at the time, it wasn’t yet called computer science), and the
artificial neuron was updated to include weights. This development led
us to Rosenblatt’s perceptron and the first neural networks that could do
something useful, ADALINE and MADALINE.

We also saw that the first architectures of neural networks—namely,
single-layer perceptrons—had a significant drawback. They could only
be used to classify data points that are linearly separable. Now we know
what that means because we discussed analyzing our data samples
(images, text) in terms of points (vectors) in a multidimensional space. A
data set that is linearly separable simply means that the data set’s classes
can be separated by bisecting the space in which they live using a line or
some hyperplane. Unfortunately, in practice most classification problems
are not linearly separable in their natural space. For example, if we
wanted to classify images of cats and dogs and we used a linear classifier
directly on the images of cats and dogs, we would find that our classifier
would perform poorly. The raw vectors—in other words, the vectors
produced by converting the images into arrays of pixel values—are
vectors that usually contain a lot of data that’s irrelevant to the problem
(e.g., pixels of background information). Given these extra pixels and
noise in the natural images, it’s difficult to expect that as vectors they
would live in a space that’s neatly organized with cats on one side, dogs
on the other side, and our separating hyperplane in the middle. Neural
networks and the addition of extra layers (hence multilayer perceptrons)
help us by transforming input vectors into a different hyperspace, where
the resulting vectors are linearly separable. This is the secret of neural
networks! They learn to transform input vectors into a hyperspace—in
other words, into a different dimensional space—where the vectors can
be linearly separated.

In the next chapter, we look at computer vision, a bit of its history,
and its similarities to biological vision. We also introduce a type of neural
network architecture, the convolutional neural network (CNN), that is
the bona fide neural network architecture for computer vision.

But before we move on to the next chapter, we want to take a
moment to address an important issue.

 PoLArIZAtIon AnD Its ConsEQuEnCEs 73

BREAKPOINT: CONFRONTING A TROUBLING LEGACY

Row 12 of the Boston Housing Price data set describes the “proportion
of Black residents by town.” This data set was compiled in the 1970s,
and this feature (dimension of the data sample) overtly illustrates the
prejudices of the times. Why are we including such a data set in an
example in this book? This data set is one of the many “toy” data sets
available online for machine-learning and artificial intelligence research.
From tutorials and deep-learning books to online competitions, the
Boston Housing Price data set is often used to benchmark AI models
and compare the performance of new models to state-of-the-art ones.
Yet, as ubiquitous as this data set is in the AI community, row 12 is
almost never discussed.

We could postulate many reasons for why it is never discussed, but
I suspect the answer is simple and should be of great concern. Mostly,
people don’t spend enough time looking at the data to even notice.
The problem with row 12 should be obvious. It implies that there is a
relationship between the number of Black people in a town and the value
of the houses. The apologist’s response is equally obvious: What’s wrong
with putting the information in the system? If it turns out that the model
finds a relationship between Black people and house prices, how is that
my fault? There are many problems with this interpretation.

Take a look at table 1.4 again, and review all fourteen features
for the housing price data set. Whenever we create a training data set,
there is a subtle danger of creating a biased data set. I would say that
a training data set is always biased in some way, a shortcoming that is
almost impossible to avoid. It’s biased because someone constructed the
data set by selecting a set of samples to be used for training the model.
The fact that some samples are selected and some samples are not means
that we are introducing bias into the system. Think of the handwritten-
digits data set. It contained 50,000 training samples. We don’t know

74 Is tHE ALGorItHM PLottInG AGAInst us?

how many individuals contributed handwritten digits to the data set, but
suppose 5,000 individuals contributed ten digits each. In a population
of 300 million, it is not clear that the 5,000 selected individuals’ writing
represents the way most people write numbers. So, by creating a data set
of samples using digits from only 5,000 individuals, it’s possible that we
are training a model with some bias toward how those 5,000 individuals
write, which does not translate well to the general population. Clearly,
there are different levels of danger in bias. If the handwritten-digits data
set is indeed biased toward how a few people write digits, the worst that
could happen is the model won’t generalize well in production, and it will
make mistakes in interpreting the handwriting of the general population.

Now let’s go back to table 1.4. Right away we can see that there is
stronger bias in this data set, even if we disregard row 12. The data set
consists of fourteen features that are used to predict the price of a house.
By the mere act of selection, we have already placed more emphasis
on those fourteen features than on any other possible predictors for
house prices. Now consider row 12. When we include the number of
Black people as a possible predictor for house prices, we are making the
data set biased toward Black people—regardless of whether the data
shows a positive or negative correlation between the feature and the
house price. But as opposed to the handwritten-digits example, this
bias has terrible consequences. There are three different possibilities for
how row 12 can affect the data: Black people contribute to an increase
in house prices; Black people contribute to a decline in house prices;
Black people are not a predictor for house prices. Only one out of the
three possible outcomes is positive toward Black people. This means
that right away there is less of a chance for this data set to benefit Black
people, and the fact that they were selected as a feature in the data set
puts them, unfairly, in a defensive position at a simulated trial.
 Suppose that, indeed, our model finds a relationship between
the number of Black people and house prices, and suppose that it’s
a negative relationship. What the model cannot do is explain the

 PoLArIZAtIon AnD Its ConsEQuEnCEs 75

reason for this relationship. Does the result mean that if Black people
move into an up-and-coming neighborhood, the real-estate value will
drop? Or does it mean that, because of the well-documented “racial
wealth gap,”8 Black households have lower median net worth and can
often only afford to live in areas where real-estate value is already low?
It is all too easy for social biases and prejudices to skew an analyst’s
interpretation of the results and lead them to conclude, “Black people
are bad for the real-estate value in a region.” Such an interpretation can
then give rise to policies of segregation, where townships might decide
to disallow Black people to move in, lest their real estate depreciate.
This further alienates and disenfranchises people.

The second problem with this example, if the first one wasn’t
troubling enough, is the statistical significance of the data. The data set
has 506 sample houses. Do we know how those samples are distributed
around Boston? Can we draw conclusions about the relationship
between the input into our model and the results without knowing
this information? Yet it would be all too easy to use this result as a
blanket reason to support prejudicial policies. Suppose it turns out that
there is a negative relationship between Black people and house pricing
in this data set. What about a different data set? What if the data set
was larger and included other regions where Black households’ median
incomes are higher? Or what if the data set included other ethnicities:
Do we know how good the Irish or Italians are for real-estate value?
How about Jews? We all know how this ends.
 This data set was generated in the 1970s, and it is, by definition,
racist. Yet many people use it today without realizing its racist
component, and that’s an important danger we want to address. Today,
we have more access to data than humans have had in the history of our
civilization. And now, for the first time, it appears that we also have the

8. Vanessa Williamson, “Closing the Racial Wealth Gap Requires Heavy, Progressive Taxation
of Wealth,” Brookings Institution, Dec. 9, 2020, https://www.brookings.edu/research/
closing-the-racial-wealth-gap-requires-heavy-progressive-taxation-of-wealth/.

76 Is tHE ALGorItHM PLottInG AGAInst us?

power to modify it, transform it, and extract patterns and information
from it. But it is not clear that we have the ability to understand our
results and make sense of the data. How do I know that people use the
data without paying enough attention to it? In several online tutorials
and at least one book on deep learning, the Boston Housing Price data
set is used but not really explained. In most cases, only the first few
rows (rows 1–3) are listed with explanations of what the features mean;
the rest of the rows aren’t explained. Instead, they just show examples
of the vectors of fourteen values. And very little emphasis is placed on
understanding what those values mean.

Was this done on purpose, to avoid an embarrassing part of our
history? A yes answer to this question would be bad, but my guess is
the answer is no, and unfortunately this answer isn’t much better. It
shows our willingness to use data without really understanding it and
that we expect our AI models to be “intelligent” enough to avoid biases
in the data. But as we have seen in this chapter, the “intelligence” in
AI is granted too quickly. Our models simply learn patterns from the
data. If we produce and input data that is biased, our results will be
biased—and we always produce biased data!

There is a real danger in deciding that because we can’t understand
our data, we need to use an AI model to make sense of it. If we
blindly shovel information into a model and make policies based on
the results, we are fully answerable for the biases that are perpetuated.
The responsible approach is to first understand the implications of our
data, especially the biases buried in it, and then use algorithms to find
patterns that we humans have trouble discerning.

We are well on our way to having a basic understanding of
neural networks and how they function. In the previous

chapter, we were introduced to the MLP (multilayer perceptron). We
learned a bit about the history of the artificial neural network, which
helped us grasp why neural networks work and what inspired their
creation and evolution. The MLP is a powerful general approximation
function, and it can be used to analyze data for a wide array of use
cases, from classification problems to different forms of regression.
In this chapter, we discuss a different architecture of neural networks
called the convolutional neural network (CNN)—the star of image-
processing algorithms and the backbone of most computer-vision
systems today. More importantly, MLPs and CNNs are the building
blocks for the neural network architectures predominately in current
use. If we can understand MLPs and CNNs, we will have a solid
foundation for understanding what is happening inside most neural
network implementations for the foreseeable future. We have already
seen MLPs; let’s get started on CNNs.
 One of the classical use cases for artificial intelligence is computer
vision—creating an algorithm that allows a computer to perceive the
world around it through a camera lens. The development of computer
vision brings with it varied benefits and applications: security systems
that monitor live video footage for suspicious activity, manufacturing

2

HELLO, PANDA!

78 Is tHE ALGorItHM PLottInG AGAInst us?

assembly lines that ensure product quality, and so on. It allows us to
build autonomous systems that can navigate complex environments
without bumping into obstacles; think of self-driving cars, pilotless
airplanes, or rescue robots that can risk harsh conditions and move
more quickly than humans to reach disaster victims. Computer vision
may allow us to build medical infrastructure for automating patient
diagnosis by having a computer analyze large volumes of pathology
images and thus accelerate the diagnosis process for the long line of
anxiously waiting patients in overwhelmed health care systems. Some
researchers believe that in the future we will have companion robots
that help take care of individuals who live alone. Computer vision can
help these robots understand their human companions by following
visual cues and offering the necessary support.
 There are many practical benefits to computer vision, and we’ll
continue to examine some of those. But besides that, we spend this
chapter discussing vision systems because they are so incredibly
interesting! There is something about vision that fires up our
imagination. Although vision is quite common in many biological
systems, there is still a lot that we don’t know about it. The human
vision system is probably the most complicated vision system ever
produced, and although researchers have been successful in unveiling
some of its mysteries over the past few decades, much of it remains
hidden in the brain’s visual cortex like a wonderfully kept secret. This
combination of complexity and the unknown makes it a fascinating
subject, whether we’re studying biological or artificial systems, and as
we will see, as we slowly chip away at the unknown and unveil the
hidden machinery, we often find beauty and elegance (with a little bit
of chaos sprinkled in for good measure).
 We begin our discussion of computer vision by breaking down
one of the most successful artificial vision algorithms ever created by
humans: the convolutional neural network. We will peer into each layer
of the CNN and inspect what operations are taking place inside. This
process will help us demystify further the algorithmic aspect of the

 HELLo, PAnDA! 79

neural network. We will see that although it bears a complicated name,
it consists of simple and systematic operations. By the time we are done
discussing vision, we will have laid the foundation for understanding, at
least at a surface level, what makes artificial neural networks powerful
and will start getting an inkling for their limitations, as well. We will
compare computer vision and biological vision and explore a fascinating
phenomenon that happens with artificial neural networks. It turns
out that our artificial neural networks exhibit many properties that
are also found in some biological visual systems, but incredibly, these
properties were not purposefully built into the artificial neural network
by the designer. These are what we call emergent properties, which arise
naturally in complex systems and might be a side effect of stumbling
onto fundamental truths (more on this later). By following the thread
of these emergent properties, we are going to discuss the similarities and
differences between biological and computer vision as it exists today.
 Although the need for computer vision is well established, and its
use has become more ubiquitous in recent years, it wasn’t always obvious
that we could create a set of discrete steps that would let a computer
detect objects in an image (those steps are essentially what a CNN is). In
fact, for a long time, this seemed like an intractable problem. It may be
difficult for us to realize how truly difficult a problem computer vision
is—because we are used to seeing and recognizing objects! Distinguishing
between different objects is something we can do effortlessly. But let’s step
back briefly and think about how a computer might see the world. In our
human eyes, vision begins with photons of light entering the cornea. In
computer systems, vision begins with pixels.
 A camera snaps a picture of the world, and the picture is a 2D
image. The computer sees a 2D image as a group of pixels. Let’s
consider an image of a cat (the “cat” has become the “Hello, world!”
of computer-vision examples). Setting aside computers for a minute,
suppose we meet someone from a different planet, and we want to
explain to them what a cat looks like. First, we show them a picture of
a cat lying on a bed. In this picture, the cat is prominent; it takes up a

80 Is tHE ALGorItHM PLottInG AGAInst us?

large portion of the image. It is facing the camera with two perfectly
triangular ears pointing up, symmetrically placed on either side of the
head. The cat has golden fur with dark stripes running the length of
its back. Let’s further assume that this extraterrestrial (ET) creature
understands things in a quite literal way. To her, “cat” now means
an object that has ears that are triangular, perfectly symmetric, and
pointing straight up. She is building a set of simple rules that define
“cat” for her. The fur of a cat must be golden and striped black. Now
we show a second image of the same cat to our ET friend. In this
picture, the cat is leaping in the air with its tail pointing up. The head
is slightly turned so that only one ear is partially visible. With this new
image, our ET friend is lost! She does not know what she is looking
at. First of all, there is a tail in this picture! The picture that we used to
train her on what a cat looks like had no tail because in that image the
tail was hidden. Also, in this image the cat only appears to have one ear,
and it’s not perfectly triangular and facing the camera.
 If this sounds like a ridiculous example to you, it is because, again,
you are used to interpreting objects visually. But the ET in our example
does not have the same well-developed visual capabilities that humans
do. Instead, she is building simple rules based on the one example we
showed her and the fact that we told her that that’s what a cat looks
like. She does not have the ability to extrapolate from a single cat in
one position to what that cat might look like in different positions
and know that it is still the same cat. This is exactly the problem that
computer vision presents. The computer is an infuriatingly literal friend.
We start with an image and must build a set of rules, or check marks,
that a computer can use to determine whether the object in the image is
a cat. In fact, the computer-vision problem is even larger. You see, I did
a quick sleight of hand with my ET example. To simplify my example,
I gave the ET powers to differentiate between the object we wanted to
identify (the cat) and the background (the bed). But with computer
vision, the computer doesn’t even know where the foreground ends and
the background begins!

 HELLo, PAnDA! 81

 We can generalize on the previous cat example by referring to
the problem of identifying the cat in different positions as the class
invariance problem. A computer-vision algorithm, if it is to be useful,
must be able to recognize different classes of objects while allowing for
each class sample to look different, to be of different sizes, and to be
seen from different viewpoints and at different depths in the camera’s
field of view. Consider different breeds of cats: Persian, Maine coon,
British shorthair, American shorthair, ragdoll, sphynx. An algorithm
trained to recognize “cats” must be able to recognize a picture of a cat
even when there is wide variability in how cats of different breeds look
and how the same cat might look from different viewing angles.

TACKLING THE COMPUTER-VISION PROBLEM:
TOP-DOWN APPROACH

When considering the problem of building a vision system, there are
two different approaches we could follow. In the top-down approach,
we start by asking ourselves what the elemental qualities common to
all cats are (cats or elephants or camels—whatever it is that we are
trying to identify). Once we identify the visual cues that signal “cat”
to us, we can then proceed to construct a set of rules we can use to
teach an artificial system to identify cats, so long as the images it is
inspecting exhibit the qualities that we have associated with cats. In
artificial intelligence, we call these qualities features (sound familiar?).
 We can think of classical artificial intelligence algorithms as decision
trees following a hierarchy of rules: if this happens, then that happens,
otherwise something else happens; and from these two branches,
subsequent rules and decisions can follow. Now consider building a
computer-vision algorithm to identify cats in an image using our top-
down approach. We start by writing down a set of simple rules that
describe a cat. First, we will probably describe the edges of the cat—in
other words, the boundary between the cat and the background. We

82 Is tHE ALGorItHM PLottInG AGAInst us?

will definitely note the triangular shape of the ears, which are a very
prominent cat feature. Our rules will describe a set of edges that form
triangles without a base, like this ^ ^. We might create different versions
of these edges to cover multiple viewing angles. Most cats also have tails,
so our rules must include edges that follow the shape of tails. We will
continue this process and describe the torso, the legs and feet, and the
iconic sharp ellipses of the eyes. Once we have constructed enough of
these rules, we can build an algorithm that analyzes images and tries to
find as many of these edges as can be found in the image. If enough edges
are found, we might conclude that we have a cat in the image.
 I have just described a very simple algorithm using a concept known
as feature engineering. Feature engineering is the process of manually
either selecting or constructing a set of features that describes the class of
objects we want to identify. We construct a list of features and proceed on
a feature-matching expedition through our data set. In each data sample
(each image, in this case) we try to match as many of our engineered
features as possible, and if enough features are matched, we assume we
have found our object. I say “if enough features are matched” because
we need to use a threshold of features that we want to match before
declaring an object found. If the threshold is too low and we return a
match after a single feature has been found, we might realize that our
algorithm is very noisy and would return many erroneous matches.
 For example, suppose that in our list of relevant cat features, we
have the triangular ears ^ ^. If our algorithm predicts “cat” for every
image that contains that feature without considering other features, we
may be in for a few surprises as that shape is not found exclusively in
cats. For example, the serrated edge of a handsaw has similar shapes;
so do the shingles of some rooftops. To determine that a specific object
has been found in an image, our algorithm has to find a collection of
features belonging in our object’s class. The number of features that
must comfortably be matched to achieve an acceptable success rate
is the threshold that we described. A low threshold results in many
false positives—incorrect predictions for cats—while a high threshold

 HELLo, PAnDA! 83

might result in an algorithm that is biased toward the features we
engineered and may miss many examples of cats where all their features
don’t exactly match our definitions (false negatives).
 Feature engineering was one of the earliest techniques used in
artificial intelligence algorithms, and it is still used in some cases today
as it is much simpler and computationally less intensive than our current
state-of-the-art approaches. Face-tracking algorithms that put a green
bounding box around faces in the viewing screen of digital cameras
still use feature engineering. They use simple features describing the
shapes of eyes, noses, and the average distance between the eyes and the
nose of most individuals. Wherever those features are matched in an
image, they calculate a bounding box around the face. The downside
of feature engineering is that it is very time-consuming and requires
very experienced and well-trained engineers to design features that are
specific enough to properly describe the subject but generic enough
to allow for class invariance (the features must work for different
shapes of faces and at a range of depths from the lens). This means
that only a small list of the most prominent features can be created,
which leads to algorithms that can work quite well in some controlled
scenarios: for example, face detection on a camera where you know the
subjects will typically be facing the lens head-on and at a reasonably
predictable depth. But in general settings where the conditions aren’t
controlled, these algorithms prove too rigid for their predictions to
be trusted. Lastly, the biggest limitation to pure feature engineering,
and which binds it forever to specific and controlled environments,
is that for every new class of items we want the algorithm to identify,
we must start from scratch by designing new features for the new class
of objects. This makes this class of algorithms very hard to scale to
complex environments. Consider the difficulty in constructing a vision
system for a self-driving car if we must handcraft the features of each
obstacle a car might encounter in its lifetime (the roads, every type of
vehicle, pedestrians, signs, trees, animals, random objects on the road,
etc.). It would be impossible.

84 Is tHE ALGorItHM PLottInG AGAInst us?

TACKLING THE COMPUTER-VISION PROBLEM:
BOTTOM-UP APPROACH

The second approach to artificial vision systems is more closely related
to biological vision systems. This is what we call the bottom-up
approach. A biological vision system—specifically, the mammalian
vision system—starts with light entering the eye. As different photons
enter the eye and hit specific parts of the retina, the eye and the brain
begin to construct a hierarchy of features that eventually leads to our
understanding of the world we see. In computer vision, these points
of light are the pixels that make up an image. Our goal is to devise
a method by which our algorithm can construct a set of features by
starting from the pixels. Ideally, the learning process of our algorithm
will be generic so that for any class of objects, the learning process will
begin with the pixel and proceed from there. Intuitively this seems like
a less restrictive approach compared to feature engineering. With the
bottom-up approach, we do not decide which features are important
for any class of objects. We let the algorithm figure that out on its own.
This means that the algorithm is free to see beyond our human box
and discover its own way of seeing the world. As we let the algorithm
itself learn to see, we might, paradoxically, learn more about our own
vision than if we injected the algorithm full of our biases. An important
aspect to note of feature engineering is that every engineer will design
different features for describing the same thing. Shouldn’t features
that describe the world be determined by the data itself and not by
the subjective judgment of an individual? Shouldn’t vision rely on a
set of fundamental truths about the world? The bottom-up approach
attempts to solve this problem by removing the human from the
feature-selection process.
 Let’s recall our cat-recognition experiment. If we wanted to
implement a systematic way of extracting the outline information of a
cat, how would we go about doing it? It turns out there are mathematical
operations that can do exactly this. These fall under the image processing

 HELLo, PAnDA! 85

area of computer science. We can take an image of a cat and generate
a new image containing only the outline of the cat. That is, we can
remove all the extra information depicting the cat (color, fur texture,
etc.) and leave just the edge information, simply by using math. For
each pixel in the cat image, we update the pixel value based on a special
3 × 3 filter matrix. The process of updating the pixel values in this
manner can result in a new image containing just edge information. If
this is not clear, don’t panic; we will explain it with a detailed example.
 These image-processing operations are called convolutions,9 or
filtering operations. To carry out convolutions, we start with an image.
In image processing (and computer graphics in general), we need to
interpret the image as a mathematical construct. In other words, we need
to figure out a way to interpret the image as a collection of numbers
on which we can operate. Images are organized as arrays of pixels. That
is, an image consists of a two-dimensional surface with a resolution of
N-width × M-height pixels. An image that is 100 × 100 pixels has 100
pixels per row and 100 rows of pixels. Each pixel in the image has a value
associated with it, and this value ranges between 0 and 255. If the image
is black-and-white, we say that the image only has one color channel. For
single-channel images, each pixel in the image has a single 0–255 value
associated with it. This value describes the light intensity of the pixel. If
the value is 0, the pixel is off and appears as black. If the value is 255, the
pixel is fully lit and appears as white. For any value between 0 and 255,
the pixel appears as a shade of gray.
 If, instead of a black-and-white image, we are dealing with a
color image, we say that the image has three color channels: red,
green, and blue. In this case, each pixel has a 0–255 value that defines
the color intensity for each channel. For our purposes, we will assume
that we are working with black-and-white images because it makes
the examples easier. But note that for color images, the process is the

9. While often referred to as “convolutions,” these operations technically are correlation
operations. A true convolution operation requires flipping the filter kernel first.

86 Is tHE ALGorItHM PLottInG AGAInst us?

same. The only difference is that the operations are performed for
each color channel.

Now that we understand how images can be interpreted
mathematically, let’s consider a black-and-white image of a cat, and let’s
assume the image is 100 × 100 pixels. We will interpret the image as an
array of 100 × 100 values. Next, we perform an operation that’s known as
edge detection. This is a well-known image-processing operation that takes
an input image and transforms it into an image of the same dimension
where all pixels except for the edges of objects have been turned off—that
is, they appear black (fig. 2.1, center panel). To extract edge information
from an image, we take a specially constructed 3 × 3 matrix called a filter,
or convolution kernel (3 × 3 is a common size, but larger sizes, such as 5 ×
5, 7 × 7, and so on, may also be used), and use the edge detection filter
matrix described below. We overlay the center cell of the matrix over a
pixel in the input image and calculate a weighted sum across the pixels
covered by the filter matrix. This becomes the new value for the pixel in
the output image. If we perform this operation over every pixel in the
input image, the result is a new image showing only the edges of the
figures in the original image (fig. 2.1, center panel).

Figure 2.1 Left, an input image, Leonardo da Vinci’s Lady with an Ermine; center, the
result of an edge detection operation; right, the result of a Gaussian filter operation.
Both operations were performed following the process described in figure 2.2.

 HELLo, PAnDA! 87

 Now let’s look at figure 2.2 and see in more detail what we mean by
a weighted sum using the 3 × 3 filter matrix. To perform edge detection
on this 12 × 12 image, we use the edge detection filter matrix. We
overlay the filter matrix over the top left 3 × 3 corner of the image and
perform the following operation: 1*(–1) + 3*(–1) + 10*(–1) + 18*(–1)
+ 88*(8) + 43*(–1) + 6*(–1) + 2*(–1) + 55*(–1) = 566. This gives us
the value of the first pixel of the new image. Since this value is 566 and
our pixel-value range is 0–255, we clamp the value to 255.10 Next, we
slide the 3 × 3 filter matrix to the right by one pixel and perform the
same operation again: 3*(–1) + 10*(–1) + 0*(–1) + 88*(–1) + 43*(8) +
23*(–1) + 2*(–1) +55*(–1) + 65*(–1) = 98.
 This gives us the pixel value of the second pixel in the new image.
We can continue to slide the filter matrix this way until we reach
the right edge of the image. We then move the filter matrix one row
down and start from the leftmost pixel again. By the time we reach
the bottom right corner of the input image, we will have produced
an output image showing only the edge information of the original
image. At this point, our resulting image will contain only the edge
information of the input image. If instead of edge detection, we wish
to perform a blur operation, we can use the Gaussian blur filter in the
same manner and then divide each resulting value by 16:

1*1 + 3*2 + 10*1 + 18*2 + 88*4 + 43*2 + 6*1 + 2*2 + 55*1 = 556

556 / 16 = 34.75

In this case, we round up, and the first pixel in the new image carries
a value of 35. (In the next section, we discuss the importance of the
values in the filter matrices.)

10. Clamping in this context means maintaining the value within a specific min-max range. In
this case, our range is 0–255.

88 Is tHE ALGorItHM PLottInG AGAInst us?

1 3 10

18 88 43

6 2 55

0 5 98

23 1 4

65 80 34

12 1 55

5 254 0

100 5 3

101 1 9

12 135 56

78 0 1

27 12 0

60 100 2

2 1 14

10 19 11

98 113 2

0 2 13

0 2 15

20 91 26

89 11 200

102 4 56

2 34 123

33 93 0

15 65 22

1 45 62

0 250 120

24 45 5

13 2 200

44 4 1

65 4 65

22 15 11

0 41 15

5 23 34

1 120 65

5 11 3

31 16 100

16 40 3

1 1 34

1 39 45

111 34 3

23 0 100

101 54 3

11 79 76

2 5 0

27 0 79

1 5 82

88 2 180

–1 –1 –1

–1 8 –1

–1 –1 –1

Edge detection filter

1
16

2
16

1
16

2
16

4
16

2
16

1
16

2
16

1
16

Gaussian blur filter

 12 × 12 pixel image

Figure 2.2 Left, a 12 × 12 pixel image with the associated value for each pixel; above
right, an edge detection filter matrix; below right, a Gaussian blur filter matrix.

 Isn’t this amazing? By simply performing a set of simple
multiplications and additions between a small matrix and the pixel
values in an image, we can remove most of the information from the
image and leave just the edge information! Furthermore, if we plug
another set of specially prepared values into the filter matrix, we can
produce a blurred image (or sharpen a noisy image). To produce
different effects, all we need to change are the values in the filter matrix.
The mathematical operations are exactly the same.
 The ability to systematically extract edge information from an image
can be useful for two reasons. First, as previously discussed, we could
break down the edge information to construct a feature list for images
we want to identify. Second, if we want to perform object tracking, all

 HELLo, PAnDA! 89

we really need is the outline of an object in a scene. The color or texture
of the object adds extra information that will take time and resources to
process, but color and texture information is not relevant to the location
of the object in a scene. To perform object tracking, it’s enough to know
the outline of the object we want to track. For this reason, edge detection
is often used as a preprocessing technique for various classical image-
processing and computer-vision algorithms.

CONVOLUTIONAL NEURAL NETWORKS

Considering what we just learned about convolutions and their ability
to extract information from images in a systematic way using a filter
matrix, we might ask: What other filter matrices are there? And what
other sorts of features can we extract from images in our quest to create
computer-vision algorithms? In traditional image processing, the
values inside the filter matrices were calculated following mathematical
formulas and theorems devised by mathematicians and computer
scientists. These had to be calculated with purpose; after all, they are
extremely important, and the values inside the matrices determine
whether the end effect is edge detection, blurring, or some other
operation. Neural networks changed all of this.
 The convolutional neural network is a neural network architecture
based on a collection of filter matrices much like the ones we just
discussed. But as you might have guessed, those filter matrices are not
preprogrammed. Instead, in true AI fashion, the values of the filter
matrices are discovered during the training process. A powerful CNN
contains a robust collection of filter matrices that extract information
useful in determining the content of an image.
 CNNs are the classic neural network architecture for computer
vision. As we saw in the previous chapter, CNNs are not the only
class of neural networks that can be used for image analysis. Indeed,

90 Is tHE ALGorItHM PLottInG AGAInst us?

MLPs are also capable of analyzing and classifying images into different
categories of objects. The advantage of CNNs is that they greatly
reduce the size of the model required to process images of increasing
dimensions. The reason for this is that with MLPs, each pixel in the
input image must have a connection to a neuron in the first layer,
along with the accompanying weight for that connection. The larger
the input image, the more connections required. But with CNNs, the
weights for the neurons are shared across the entire receptive field of
the neuron. That is, the same 3 × 3 filter matrix is reused many times
to process all pixels in the image.
 We begin by describing the CNN via a top-down approach. Initially,
some concepts may be unclear and not fully developed, but we need to
start somewhere. We base our CNN description on a classic architecture
called VGG-16. VGG stands for Visual Geometry Group, the research
group from Oxford University who first proposed the architecture.
When it was introduced, it achieved state-of-the-art performance for
image classification tasks on a number of popular research data sets, and
it is still the backbone for many computer-vision tasks.
 The VGG-16 architecture consists of thirteen convolutional layers
followed by a standard three-layer MLP (a fully connected neural
network similar to the ones described in chapter 1). The convolutional
layers are a collection of filter matrices much like the one in our edge
detection example. The task of the convolutional layers is to extract
visual information, or cues, from the input image. The role of the MLP
section is to classify the features extracted by the convolutional portion.
 To understand how a CNN executes, let us first assume that our
neural network has been trained, and it is ready to be used. That is,
all the filter matrices in its layers have been programmed with useful
values. To process an input image, we present the image (in this case,
a 224 × 224 pixel image) to the first layer. In figure 2.3, we can see
that convolutional layer 1 consists of sixty-four 3 × 3 matrices. For
each 3 × 3 filter matrix, we process each pixel in the input image by

 HELLo, PAnDA! 91

the 3 × 3 filter, sliding the filter over each pixel across the input image,
as described above. Since there are sixty-four such filters in this layer,
the output of this first layer is sixty-four 224 × 224 pixel images. We
call these images feature maps. The term comes from the fact that these
images are the result of filtering operations aimed at extracting features
from the original image. The process is the same as what we described
earlier with edge detection or blurring filters; except in this case, instead
of a single filter, we have sixty-four filters.

...

3

3

64

Layer 1

...

3

3

64

Layer 2

224

224
224

Inp
ut

Im
age

224

64
VGG -16 Layers 1 & 2

Figure 2.3 The VGG-16 neural network architecture consists of several convolutional
layers, where each layer is a collection of 3 × 3 filter matrices. Layers 1 and 2 both contain
collections of sixty-four 3 × 3 filter matrices. The output of these two layers is a volume
of sixty-four images, called feature maps, the same size as the input image. Author’s
rendering based on Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition” (poster presented at the Third International
Conference on Learning Representations, San Diego, CA, 2015), https://doi.org/10.48550/
arXiv.1409.1556.

 The output of layer 1 is a feature map volume of sixty-four 224
× 224 pixel images. These images become the input to layer 2, which
consists of another sixty-four 3 × 3 filter matrices. The input to layer 2
now gets processed by these matrices in a similar manner to layer 1.11

11. This is a simplified explanation of the process of performing a filtering operation over an
input volume. The filters of CNNs have a channel dimension as well, and the channel
dimension must match the channel dimension of the input volume. This means that layer
2, in fact, consists of sixty-four 3 × 3 × 64 filter matrices, where each image in the sixty-
four-image input volume is processed by a different matrix in the 3 × 3 × 64 volume. Once
the input volume is processed by a 3 × 3 × 64 filter, a single feature map is output.

92 Is tHE ALGorItHM PLottInG AGAInst us?

The output of layer 2 is also a feature map volume of sixty-four 224 ×
224 pixel images. These images will contain features that are different
from those output by layer 1.
 As we progress deeper into the VGG-16 architecture, layers 3 to
13 are similar to layers 1 and 2; what changes is the number of filters
per layers. Layers 3 and 4 consist of 128 filter matrices. Layers 5, 6, and
7 consist of 256 matrices. And finally, layers 8 through 13 consist of
512 filter matrices (fig. 2.4).

MLPCNN

3
×

3
×

64

3
×

3
×

64

3
×

3
×

12
8

3
×

 3
 ×

 1
28

3
×

3
×

 2
56

3
×

3
×

25
6

3
×

3
×

25
6

3
×

3
×

51
2

3
×

3
×

51
2

3
×

3
×

51
2

3
×

3
×

51
2

3
×

3
×

51
2

3
×

3
×

51
2

M
ax

Po
ol

M
ax

Po
ol

M
ax

Po
ol

M
ax

Po
ol

M
ax

Po
ol

40
96

40
96

10
00

Figure 2.4 The VGG-16 neural network architecture is divided into a convolutional
feature-extraction portion and an MLP classifier portion. The CNN section itself
is divided into blocks of layers of equal numbers of filter matrices, with a MaxPool
operation between blocks. The final output of this neural network as shown in the MLP
section comprises 1,000 values. This neural network can classify objects into 1,000
different categories. Author’s rendering based on Karen Simonyan and Andrew Zisserman,
“Very Deep Convolutional Networks for Large-Scale Image Recognition” (poster presented
at the Third International Conference on Learning Representations, San Diego, CA, 2015),
https://doi.org/10.48550/arXiv.1409.1556.

 As information flows through the different layers in the CNN,
feature complexity builds. This is because the latter layers extract
information from feature maps produced by the intervening layers.
You can think of it as the deeper layers using the features extracted by
earlier layers and putting those features together to build higher-level
concepts. Specifically, the difference in complexity means that the early
layers typically learn to extract edge and color information, whereas the
deeper layers learn to detect texture and such conceptual information
as eyes or whole faces or even motion.

 HELLo, PAnDA! 93

 Between blocks of convolutional layers, an operation takes place
that’s very common to CNNs—the MaxPool operation (fig. 2.4).
For each 2 × 2 pixel window in each feature map, the highest value
is chosen, and the rest are discarded (see fig. 2.5 for an explanation).
This has the immediate effect of reducing the size of the images by
half for subsequent processing, which has the benefit of speeding up
the computations in the latter layers. Reducing the size of the images
by half means that the feature map sizes after the first MaxPool
operation go from 224 × 224 to 112 × 112 pixels. The second
MaxPool operation reduces it to 56 × 56 pixels. By the time we get to
the end of the CNN portion of the network, the size of the feature map
volume is 7 × 7 × 512 pixels—that is, 512 images of 7 × 7 pixels each.

1 3 10

18 88 43

6 2 55

0 5 98

23 1 4

65 80 34

12 1 55

5 254 0

100 5 3

101 1 9

12 135 56

78 0 1

27 12 0

60 100 2

2 1 14

10 19 11

98 113 2

0 2 13

0 2 15

20 91 26

89 11 200

102 4 56

2 34 123

33 93 0

15 65 22

1 45 62

0 250 120

24 45 5

13 2 200

44 4 1

65 4 65

22 15 11

0 41 15

5 23 34

1 120 65

5 11 3

31 16 100

16 40 3

1 1 34

1 39 45

111 34 3

23 0 100

101 54 3

11 79 76

2 5 0

27 0 79

1 5 82

88 2 180

88 43 98

27 65 80

100 98 113

254 101 135

100 102 56

91 200 123

65 62 200

250 120 45

40 111 100

65 65 120

101 27 79

79 88 180

MaxPool

12 Pixels

12
 P

ix
el

s

6 Pixels

6 Pixels

Figure 2.5 The MaxPool operation serves to reduce the size of the data that must be
processed in each block. It is performed by selecting a 2 × 2 pixel window on the top left
of the input image and then selecting the pixel with the highest value in that window.
This pixel is kept and becomes the first pixel in the output image; the other pixels are
discarded. We then slide the 2 × 2 pixel window to the right and continue processing
the input image. In this example, our first 2 × 2 pixel window contains the following
pixel values: 1, 3, 18, 88. The highest value is 88, so we keep this pixel and discard the
rest (right). The next window contains: 10, 0, 43, 23. The highest value is 43, so we
keep this pixel and discard the rest. Thus, we reduce the input image from 12 × 12
pixels to 6 × 6 pixels.

94 Is tHE ALGorItHM PLottInG AGAInst us?

 The intuition behind max pooling derives from interpreting
the values in each 2 × 2 region of the feature maps as indications
of important features in the data. By selecting the largest value and
preserving it for subsequent processing, we retain the most important
feature in the 2 × 2 window. As with many subjects related to artificial
neural networks, however, the intuition behind certain operations is
sometimes added as an ad hoc explanation after a concept has been
developed. In reality, much of what we do with neural networks is
done because it was empirically found to work. In the case of MaxPool,
the main benefit (and what has influenced the implementation of
this operation) is reducing the image size so that subsequent layers
have less data to process. Once a concept like this is implemented,
it is tested against well-known data sets and different neural network
architectures. If the concept works, it is kept, and other people
incorporate it into their research. This means that we often don’t end
up with a theoretical proof of why or how it works. If this sounds like
a less-than-rigorous approach to science, in some respects it might be.
The benefit of this approach is that the field of artificial intelligence
has experienced an unprecedented explosion in results and solutions
in recent years. Whether this is a good thing or a bad thing depends
on what our ultimate goals are. If the goals are to advance the AI
field and solve discrete problems like image classification or natural
language processing, clearly this approach is working. If the goal is
to fundamentally understand “intelligence” and build a model of the
human brain, I suspect we will need a more rigorous approach where
we fundamentally understand the gains and losses of each operation:
For example, why does MaxPool really work, and what is the cost of
the values that we discard in a more generalized sense?
 The last layer in the CNN just before the classifier section
outputs 512 7 × 7 pixel feature maps. Before proceeding to the MLP
section, we take each 7 × 7 pixel image (or feature map), unroll it into
a single flat vector of 49 values, and attach each of the 512 vectors to

 HELLo, PAnDA! 95

the end of the previous one to generate a 25,088-value vector (7 × 7
× 512 = 25,088). When we present this vector of 25,088 values to the
classifier, this is the data it uses to predict the class of the object in the
original image.

Note: we omitted a slight complication in the operations of the
CNN. For each filter neuron, at each processing step where we filter
a 3 × 3 input volume, the result of the filtering operation is further
processed by a nonlinear function f. After all, a CNN is still a neural
network. Each 3 × 3 filter matrix is itself a neuron, and as we know,
neurons require an activation function to decide when to fire. In the
case of the VGG-16 architecture, the nonlinear function f used is a
ReLu function. Recall that this function takes an input value, and if
the value is negative, the function outputs 0; if the value is positive, it
returns the same input value. Suppose that the result of our filtering
operation is –4; then, f(–4) = 0. That is, the value produced by the
neuron will be 0. If the result of our filtering operation is 4, f(4) = 4.
The value produced by the neuron will be 4.
 The filtering process in the CNN extracts and combines
information from the feature maps in a manner similar to the edge
detection example and creates a new set of images (i.e., feature maps)
consisting of a specific set of features. These may be edge information
or texture information, and the deeper we get into the neural network,
the more and more complex the extracted features become. If the neural
network was trained to detect animals or human faces, in the deeper
layers, we might find neurons that are sensitive to higher-level concepts
like eyes, ears, or whole faces. If we think of the filtering process as
similar to extracting some elements out of a bucket of sand using a
series of sifters, we can imagine that each subsequent sifter lets finer-
grained material through. In the end, what we are left with is a distilled
version of the bucket of sand that we started with. Thus, we can say
that the final output of the convolutional section is a distilled version
of the original image. If the neural network was trained correctly and is

96 Is tHE ALGorItHM PLottInG AGAInst us?

working, the output consists of a compressed, smaller, and more potent
version of the original input image.
 Once we produce that distilled version of the original image (in our
case, the original image has 50,176 pieces of information, or 224 × 224
pixels), this distilled version is sometimes called a latent representation,
or latent vector. In our example, the latent representation has 25,088
pieces of information. This represents a reduction by 50 percent in the
amount of data that will be used to classify the object in the image.
Remember, the CNN section does not perform classification. It simply
extracts information from the image in the form of feature maps and
combines this information into a latent, or distilled, version of the
input image. The latent representation then gets processed by the
classifying section, and it is this section that makes a prediction as to
what class of objects is hiding in that latent representation.

You may be wondering about the intuition that the latent
representation contains all the information we need to make a prediction
on the object we are trying to detect. After all, how do we know that by
losing 50 percent of the original input we haven’t lost some vital part of
the object? We began this chapter with the example of trying to detect a
cat in an image. In one of the images we discussed, our cat was lying on
a bed. If we think of that image as a collection of pixels and each pixel
as a unique piece of information, how many of those pixels are vital to
our understanding that there is a cat in that picture? Put another way, if
we opened that image in Photoshop and deleted or changed a few pixels,
would we no longer be able to detect the cat in the picture? It turns out
that if our goal is to predict “cat,” most of the information in that image
is superfluous. If we removed the bed and all the background from the
image, we would still be able to detect the cat. In fact, if we removed all
the pixels that describe the fur and texture of the cat and left just the edge
information, we would still be able to detect the cat in the image.
 Hopefully, we can now start to see why compressing the original
image before classification might not be such a bad idea. For any given

 HELLo, PAnDA! 97

image, there are always pixels that could be removed without losing
vital information about the subject. The goal of training our CNN is
to have the algorithm learn which information is OK to remove and
which isn’t. This in part depends on what our goal is in our use case.
For example, if we want to detect cats in images but we are not worried
about which breed of cats, all we really need our algorithm to do is
encode information about the shape of cats; texture information isn’t
as important. But if we decide that we want our algorithm to detect
not just the shape of the cat but also whether it is a Siamese or a Bengal
cat, then encoding texture information in the latent vector might be a
good idea. This makes sense because different breeds of cats also tend
to have different colored and textured furs. When we are discussing AI
concepts, we need to always keep our goals in mind. In other words,
what is it that we are asking the algorithm to do? As we will see, when
we train our algorithms, they are trained to meet the goal that we set
out for them. So if our goal is not well defined, the algorithm will not
meet our asks, just as if we train a CNN to detect the general shape of
cats, we cannot expect it to also detect breed.

USE-CASE EXAMPLE

Let’s see how we might employ our CNN. Suppose that we are tasked
with creating a computer-vision system for a sorting facility. We want
a machine to sort a list of artifacts into different boxes. To do that,
the machine needs to distinguish between different classes of objects.
In our example, the machine needs to sort through different types of
batteries: 9V, AAA, AA, and button batteries. So we have four classes
of objects that our system needs to recognize. This means that our
VGG-16 neural network will have four different output channels, one
for each class. Note that in figure 2.4, there are one thousand different
outputs. This is because the classic VGG-16 neural network was trained

98 Is tHE ALGorItHM PLottInG AGAInst us?

to recognize one thousand different classes of objects using the popular
ImageNet data set, which contains over 14 million images. The output
layer can be modified, however, to output as many channels as there are
categories in the problem we are trying to solve.

So how does our automated sorting machine work? First, it uses a
camera to take a picture of the object in front of it. The image is then
presented to the neural network, which processes it and outputs a set
of probabilities spread across the four output classes. Table 2.1 shows
that the neural network has output classes 0, 1, 2, and 3, one for each
class of object it needs to identify.

Table 2.1 Four Classes of Batteries our neural network Must Identify

Class label Class

0 9V

1 AAA

2 AA

3 Button

 When the assembly line starts running and brings a set of batteries
for our sorting robot to distribute among different battery bins, the
camera snaps a picture. The first item to be sorted is a 9V battery. The
image is presented to the VGG-16 neural network, which outputs a
prediction for which type of battery it believes it is. On a well-trained
neural network, the outputs might look the ones in table 2.2.

Table 2.2 Probability outputs for Each Predicted Class

Predicted class Prediction

0 0.98

1 0.01

2 0.007

3 0.003

 HELLo, PAnDA! 99

 In table 2.2, the prediction represents the neural network’s
confidence, as a probability, that the item in the image belongs to the
class represented by the output class. So here we see that the neural
network calculated a 98 percent probability that the image is a 9V
battery, a 1 percent probability that it’s a AAA battery, and so on. Note
that since we are discussing probabilities, the sum of the output values
must equal 1 (100%). We have just seen how CNNs communicate with
us. It’s really very simple. They output a set of probabilities through their
output channels, and we pick the highest probability as the network’s
prediction. In practice, the difference between the predictions across
the output channels isn’t always this stark. For example, it is possible
that for some images of AAA batteries, at certain viewing angles, the
predicted difference between a AAA and AA classification is much
closer, like in table 2.3.

Table 2.3 Probability outputs Conveying a neural
network’s Lower Confidence Level on the Correct Classification

Predicted class Prediction

0 0.025

1 0.65

2 0.32

3 0.005

In table 2.3, we see a 65 percent probability that the battery is
a AAA battery and a 32 percent probability that it’s a AA battery.
We can understand some hesitation on the neural network’s part in
distinguishing between AA and AAA batteries since they are quite
similar, with overall size being the main differentiator. What would
be surprising is if the neural network were to analyze a 9V battery
and output close predictions for 9V and button batteries. You would
intuitively expect that 9V batteries and buttons batteries have features
that are distinct enough for their predictions to be far apart.

100 Is tHE ALGorItHM PLottInG AGAInst us?

Whether we are classifying images or numerical data samples, as
we did in the previous chapter, the concept remains the same: Neural
networks have one output channel per class (if we need to classify ten
different items, the network will have ten different output channels).
The network outputs a probability that the item we are trying to
classify belongs in each possible category. We then choose the output
channel with the highest probability and say that the image belongs in
the class that is represented by that output channel. In principle, this
is no different than the simple MLP we discussed in the last chapter.

TRAINING AND ARCHITECTURE DESIGN

At this stage, you should have a good understanding of what the
convolutional section of a CNN does (extract a set of important
features from an image) and how it does it. It is just a series of
operations, mostly multiplications and additions (with a nonlinear
function processing the result of each weighted sum), which have the
effect of extracting specific elements from the input image. These in
turn are key to detecting the subject of the image. That is exactly why
this process is called filtering: just think of how adding different filters
to a camera lens reveals different aspects of our world, which might be
harder to see with the naked eye.
 There are still two important pieces of information we have not
discussed. The first one is how we decide on the architecture of the
CNN. For example, why does VGG-16 have thirteen convolutional
layers, and why does the third block have layers of 256 neurons while
the fourth and fifth blocks have 512-neuron layers? How do we know
we have enough convolutional blocks? How do we know we’re not
missing a few blocks? The second piece concerns how we program each
3 × 3 filter in each layer. How do we select the numbers that should go
in each cell of the 3 × 3 filters?

 HELLo, PAnDA! 101

 Unfortunately, deciding on a CNN’s architecture is not a simple
process. There aren’t strict rules for how we choose the architecture
of a neural network to solve a given problem. There are general
considerations that can guide the intuition for the number and size
of each layer. The larger the model, the more trainable parameters it
has (i.e., the more 3 × 3 filters that must be programmed); the more
trainable parameters it has, the larger our training data set needs to be.
Why are the sizes of the data set and the model related? If we have a
small data set but a neural network with many millions of parameters,
we might find that our neural network “memorizes” the training data.
That is, the neural network will follow the training data too closely.
This is bad because a small training data set may not be a great example
of the real world, so we are not really preparing the neural network for
succeeding in the real world if we allow it to “memorize” all the data.
Similarly, if we have a large training data set but a very small neural
network, we may not have enough trainable parameters to adjust for
extracting an appropriate diversity of features from our data set.
 A simple rule of thumb is to not make the model too large if our
training data set isn’t large enough. In practice, however, researchers
fine-tune the shape and architecture of the network simply by trying
different things and seeing what works. So we might add or remove
layers until we have a solution that works. Over the last decade,
researchers have discovered neural network architectures that are better
suited for particular classes of problems, from computer vision to
natural language processing to outplaying a chess grand master. Once a
base architecture is found to work well for a specific class of problems,
other researchers typically iterate over established model architectures
and make little modifications here and there until the model works
for their particular use case. The important thing to understand is
that there are no commandments that describe how to design a neural
network to solve a given problem. Instead, we start from an established
architecture known to work for our class of problems (e.g., classification

102 Is tHE ALGorItHM PLottInG AGAInst us?

of human faces or classification of chest X-rays) and then slowly add/
remove layers and blocks until the model starts to perform well.
 Now we can address the second issue. How do we program the
values in each cell of the 3 × 3 filter matrices? If we remember from
the edge detection example at the beginning of the chapter, the values
we put into the filter matrix are very important. If we put in arbitrary
values, we will get a resulting image that will not contain any useful
features. It might look corrupted or like random noise. If we put a
special set of values known to filter edge information, we get a resulting
image that contains just the edges of the original image (fig. 2.1). It
should be clear by now that these values do the very important job of
extracting information from the input image. Our goal is to create an
algorithm that can extract the right features from an input image that
can lead to the classification of the subject. This is precisely what the
training process does.
 During the neural network’s training process, our aim is to discover
the values that must be put in each 3 × 3 filter so that the right set of
features are extracted from our images, which, when presented to the
classification section of our network, can lead to the correct prediction of
the object’s class. The reason CNNs end up using so many filter neurons
is that vision requires a complex system where features are extracted at
different levels and combined to create higher-level concepts in the latter
layers. The impressive achievement in the training process is that we
establish a set of steps that systematically discover a set of filter values that
leads to the algorithm predicting the correct class to remarkable levels of
accuracy. All of this without explicitly telling the algorithm what’s special
about cats or humans or AA batteries!
 To train a neural network, we begin with a training data set—
which, for a computer-vision algorithm, is a specially crafted collection
of images and labels. The labels represent what we call the ground truth
for the class of the image. If we want to train a model to differentiate
between humans, cats, dogs, and bears, our data set must consist of

 HELLo, PAnDA! 103

many images of humans, cats, dogs, and bears. Each image in the data
set will contain a label that tells our neural network the class of the
image. As we saw earlier, the label is just a number that we assign to a
particular class. We could define our training data set to have label 0
for humans, 1 for cats, 2 for dogs, and 3 for bears. Then every image of
a dog in our data set will have a label of 2.

Initially, the parameters in the neural network—that is, all the
values in the 3 × 3 cells of the filter neurons—are initialized with random
values. Since the values are randomly selected, the neural network isn’t
very good at extracting useful features from the input images, and the
predictions are highly inaccurate. But as training progresses, the values
in the filter neurons get adjusted, similar to how one might slowly turn
the dial on a radio to tune to a specific frequency. As the filter values get
adjusted, the neural network gets better at extracting useful features in
each layer, and the predictions get more accurate.
 To understand exactly how the network parameters are adjusted
through training, we need to understand what happens when the
network makes a mistake. To make this example easier to follow, let’s
scale the problem down to a binary classification task. In honor of the
great sitcom Silicon Valley, let’s train our network to recognize food
items as either “hot dog” or “not a hot dog.” In this example, the “hot
dog” class will have the label 1, and the “not a hot dog” class will be
labeled 0. Since we are just beginning to train our neural network, our
parameters all consist of random values. Now we go and present an
image of a pizza slice to our network. Since the network hasn’t been
trained, the probability that it will correctly predict “not a hot dog”
is 50 percent, so let’s go ahead and assume that it makes a mistake
and predicts “hot dog.” Remember that neural network predictions
are done using numbers, and in the binary classification example, the
output will be a value between 0 and 1. An output of 1 represents the
neural network being 100 percent confident that the image is a hot
dog. An output of 0 represents the neural network being 0 percent

104 Is tHE ALGorItHM PLottInG AGAInst us?

confident that the image is a hot dog (another way to say this is that
the neural network is 100 percent confident that the image is not a
hot dog). Any output between 0 and 1 signifies a confidence level for
the likelihood that the image is a hot dog. Because the mistake we are
discussing happens during the training phase, the image of the pizza
slice we are presenting to the network has a label that represents the
image’s true category.
 In our example, the neural network has made a mistake and
predicts a value close to 1 (0.89). This prediction tells us that the
neural network is 89 percent confident that the image it saw is that
of a hot dog. The training algorithm happens to know that this image
is in fact not a hot dog because it knows the true label of the image,
which happens to be 0 (“not a hot dog”). Now the training algorithm
needs a method of determining how far its prediction was from the
true class of the image. We call this method a loss function. The loss
function provides a way to measure how far the model’s predictions are
from the ground truth. By knowing how far off the predictions are, we
can calculate how much we need to change the model’s parameters so
that next time the predictions will be a bit closer to the ground truth.
Intuitively this makes sense: if the predictions are very far from the
ground truth (as in our example, where 0.89 is quite far from 0), we
need to modify our model’s parameters by a larger amount than if the
prediction had been closer to the ground truth (say, 0.2).
 In chapter 3, we examine a more detailed example of how the
parameters of the model are updated; for now, we are just trying to build
intuitions. We want to understand how in principle a generic algorithm
can modify parameters of a neural network to progressively make better
predictions about the data it is analyzing. What we have just learned is
that the training algorithm uses a set of training images, presents the
images to the model, gets predictions from the model, measures how
far the predictions are from the ground truth (which we know because
a training data set contains labels for all the samples), and uses that

 HELLo, PAnDA! 105

information as a measure for how much the model’s parameters should
be updated. Then, the next time the model is presented with that same
image, the prediction will be closer to the ground truth.
 The process for updating the network parameters is called gradient
descent through back propagation—a very elegant algorithm that
methodically calculates an amount by which to change each network
connection (or each cell in the 3 × 3 filter neuron). The network
connections have values that range between 0 and 1; back propagation
uses calculus (Remember calculus? It turns out it’s useful after all!) to
calculate how much a change in each connection contributes to the
error in the prediction and adjusts each value in the direction that
minimizes the error. We address this in greater depth in chapter 3.
 An intuitive way of picturing the process of tuning the neural
network parameters to produce accurate results is to think of a neural
network as a mathematical function that transforms an input value
into an output value. A mathematical function such as f(x) = x + y
transforms an input x by adding y. Suppose we used an input of 4
and randomly initialized y to 1. The output of the function would
be 5. Now suppose we want to get the function to output a value of
9. We need to figure out how to modify y to get our desired output.
With y initialized to 1, our output is 5, but the desired value is 9.
We can use a simple loss function (introduced in our “hot dog” /
“not a hot dog” example) and subtract the desired output from the
actual output: 9 – 5 = 4. This tells us that our output is 4 points off
the mark. We can now set y to 4 and try again. This time we get 5 +
4 = 9, which matches our desired output. In principle, this is exactly
what we are trying to achieve with the neural network. It truly is a
mathematical function in very much the same way. The difference is
that instead of a single parameter y, there are millions of parameters,
so the process of updating those connections is more complex, and
the updates must be made more slowly, inching closer to the answer
over time.

106 Is tHE ALGorItHM PLottInG AGAInst us?

LEARNING TO MODEL A DISTRIBUTION OF FEATURES

In our mathematical function example, there is just one right answer: 9.
So we can update parameter y at once to a setting that gives us the answer
we want. We can describe f(x) as mapping an input to an output value.
For example, by setting the y parameter to 4, we have mapped input 5 to
output 9. In our image classification example, the “right answer” is more
complicated. We want the network to recognize images of hot dogs, but
there isn’t just one single image of a hot dog. Think about how many
ways we can make an image of a hot dog look (yum). And the network
needs to be able to recognize them all. Put another way: Think of an
image as an arrangement of pixels. In how many ways can we arrange the
pixels so that it results in something resembling a hot dog? Considering
that the resolution of the image is fixed, the answer is not infinite, but it
is clearly quite large. Therefore, when we update the connections of our
network, we can’t update them in such a way that it can recognize only
this one image of a hot dog. It needs to recognize any image of a hot dog.
 We dive deeper into the mathematics behind the classification
when we discuss linear and logistic regression. For now, we just need
to get a feeling for what is happening behind the scenes. In our simple
function f(x), when we turn the dial on parameter y and adjust its value,
we are trying to home in on a specific output. With AI algorithms like
neural networks, what we are trying to do is adjust the many dials
(millions of dials) of the function, but instead of trying to map a
specific input to an output, we are trying to map a range of inputs to
a specific output. We can think of every class of objects we are trying
to classify as consisting of samples that share common elements. These
are the attributes that determine whether they belong to that class.
For example, we might have ten images of different-looking hot dogs,
all of which are still recognizable as hot dogs—just like we can have
ten images of different cats that share enough commonality to still be
recognized as belonging to the class “cats.”

 HELLo, PAnDA! 107

 Consider this: two different images of a hot dog may look very
different from each other, but we still know they are not so different as
to be confused with a cat. Remember that images are arrays of pixels,
and pixels can be interpreted as numerical values. This allows us to
consider an image as a vector in some multidimensional space where all
possible images of hot dogs point in some similar direction. Similarly,
all images of cats would consist of vectors that point in roughly the
same direction. These vector groupings we call distributions, because
the samples are arranged, or distributed, close to each other in some
hyperspace. When we assign a class to a group of samples, we are
determining that they belong in the same feature distribution. The role
of an AI algorithm is to learn the shape and location of the distribution
in the multidimensional vector space where all things exist.
 All right, now we have gleaned enough information to gain access
to the secret behind the madness. The power of neural networks is that
they learn to model the distribution of features for the classes they are
trained to classify. By learning the shape of the feature distribution for
each class of samples, they learn to map a range of possible inputs to each
output. This is what makes it possible for a neural network to function
beyond training. That is, once the neural network is trained, it can
classify brand-new images it never saw during training. Neural networks
are not matching algorithms that store a database of known images and
later reference them. Neural networks learn a space of possibilities for
the features that define an object’s class. Later, when presented with a
brand-new sample, they can check which of the learned distributions
more closely resemble the features in the new sample and thus classify it.
 It is important to note that the very quality that makes neural
networks powerful can be a source of weakness. You see, learning the
distribution of features for a class of samples is a powerful technique
because it means that for unseen data, the network only has to check
whether the new sample exists in the same distribution space. This
is a fancy way of asking, when we interpret the new input image

108 Is tHE ALGorItHM PLottInG AGAInst us?

as a vector, whether that vector is pointing in roughly the same
direction as one of the classes of objects the network is trained to
identify. The downside is that the network has learned the shape of
the distribution based on the training data. If the training data set is
not large enough, or if it is biased toward some population sample,
then the learned distribution will not match the real world, and the
model will perform poorly outside the lab environment.

For example, suppose the neural network is trained to identify
cats using only images of Siamese cats, and we later ask it to identify
an image of a white Persian cat. These two cat breeds are distinct
enough that the neural network may not find that they belong to the
same distribution. To train a neural network to be robust enough
to recognize any cat image presented to it, we must train it against
a data set consisting of thousands of images of all cat breeds. The
less robust the training data set is, the more limited the learned
distribution will be, and therefore, the more mistakes we can expect
in a production environment.
 Suppose that the neural network performs quite well at
recognizing cats in general. What if we wanted to train it to recognize
different breeds of cats? The training process remains the same, but
the data set would need to change. This is a beautiful quality of
neural networks. To train the neural network to recognize different
classes of objects, we simply need to change the training data set.
The model and the training algorithm remain largely unchanged. To
teach the network to recognize different breeds of cats, we would
require a data set that contains thousands of images of the different
breeds of cats we want to identify. The neural network can then learn
the distribution of features of each cat breed. But beware! If any one
class of cats is underrepresented in the training data set, the learned
distribution will be a poor match for the real distribution of features
for that class, and the neural network will not accurately represent
that class.

 HELLo, PAnDA! 109

ARTIFICIAL VS. BIOLOGICAL VISION

So far we have discussed CNNs, which are a class of artificial neural
networks, as mathematical functions mapping a range of inputs to
specific outputs as they learn feature distributions. To some, this view
might reduce the romantic charm of artificial neural networks in much
the same way that learning a magician’s trick tarnishes the performance.
This might be true if we expected artificial neural networks to resemble
the mushy neurons in our own brains capable of complex thought and
consciousness. To some extent, however, this disappointment is the result
of undue expectations on our part. Luckily, unlike the magician’s trick,
which is simply an illusion, artificial neural networks are real algorithms
drawing from concepts across multiple disciplines spanning decades of
research, and they work! Also, as it turns out, the more we learn about
the mushy stuff in our noggins, the more we see that the ethereal and
mystical process of biological vision is just a series of computational steps.
 Now that we have a basic understanding of computer vision, it’s
time to spend a few moments going over biological vision systems and
seeing where art imitates reality. This is what we have all been waiting
for, isn’t it? We want to see how well our algorithms imitate us. One of
the most fascinating aspects of artificial neural networks like CNNs is
when these complex systems exhibit emergent properties that resemble
biological systems. Emergent properties are properties that arise from
a system without being purposefully built into the system. But before
we can dive into the emergent properties of CNNs, we need to discuss
some of the architectural or physiological parallels between biological
and artificial neural networks. This chapter has been all about vision,
so we will continue to follow the vision thread as we explore parallels
between artificial and biological systems. We have learned that artificial
neural networks are built as stacks of layers made up of neurons, where
connections and information flow from layer to layer. It turns out that,
at least in principle, our vision system is quite similar.

110 Is tHE ALGorItHM PLottInG AGAInst us?

 Let’s start with an overview of the most important elements of
our vision system. For the purposes of this book, we don’t necessarily
need to understand each component of our vision system. We will
do the best we can, however, to start with a robust description of the
components involved; this way, we can at least start to see how vision
involves many different processes and structures working together,
beginning with simple concepts and building complexity. The vision
system of mammals consists of three main components: the retina, the
lateral geniculate nucleus (LGN), and the visual cortex in the brain.
The visual cortex itself is divided into five areas: the primary visual
cortex (V1) and the secondary visual cortex (V2), as well as V3, V4,
and V5.

Information processing for vision begins in the eye itself, at the
retina. The retina consists of several layers of cells, beginning with
ganglion cells and followed by bipolar and horizontal cells connected
to a photoreceptor layer consisting of rod and cone cells. Rod cells
are typically concentrated around the outer edge of the retina and
are mostly responsible for night vision. Interestingly, our eyes have
different structures for processing colors and grayscales. Rods seem to
play almost no role in color vision, which might explain why it is very
difficult to distinguish between different colors in dim environments.
They also take significantly longer to adapt to light compared to the
color-sensitive cone cells. This is why it takes a long time for our eyes
to adjust when we move from a well-lit room into a dark room.
 For color vision, we have three types of cone cells, each sensitive to
a different frequency of light: red, green, and blue. You might know of
someone who is color-blind. People who are color-blind have sustained
damage to one or more types of cone cells. Depending on the types
of cone cells that are damaged or not functioning, the individual will
be unable to perceive certain color ranges. The most typical form
of color blindness is a deficiency in perceiving color in the red and
green frequency range. A more severe but less common form of color
blindness is a deficiency in perceiving blue and yellow color ranges. As

 HELLo, PAnDA! 111

we will see, these color pairings—red-green and blue-yellow—are also
associated inside artificial neural networks.
 The cone and rod cells are connected to bipolar cells, which in
turn are connected to ganglion cells. The ganglion cells are a very
important layer of cells that connect the retina to the LGN and the
primary visual cortex in the brain. An interesting property of the
retina and the organization of these layers is that the ganglion and
bipolar cells are directly in the path of the light as it travels into
the eye toward the photoreceptors. You would think that one would
place the photoreceptors in the outermost layer, free of interferences;
evolution had other plans. Thankfully, the layers of cells in front of
the photoreceptors are mostly transparent and offer little disturbance
to the light.
 At a high level, the photoreceptor layer detects photons that
enter the eye. The detection process generates signals between the
photoreceptors and the ganglion cells. Here we encounter the first
information-processing problem in our vision system. There are
approximately 100 million photoreceptors in each eye but only about
half a million ganglion cells. So as information proceeds from the eyes
to the LGN and further toward the primary visual cortex, a significant
amount of data compression takes place. That is, we start with roughly
100 million data points in each eye and reduce that to roughly half a
million data points by the time information leaves the eye en route to
the brain. Does this sound familiar? Data compression is a quality of
information processing that is not unique to biological vision systems;
indeed, data is compressed and expanded as it travels between different
stages in the visual system, and as we saw, the same is true with artificial
neural networks.
 In the 1950s, Stephen Kuffler conducted a series of experiments
on anesthetized cats that showed information processing starting even
at the level of the ganglion cells in the retina. He and his team placed
an anesthetized cat on a table with its head facing a screen and the eyes
held open. They then showed an image of a black background with

112 Is tHE ALGorItHM PLottInG AGAInst us?

a white spot moving against the black background. As they moved
the white spot around the screen, they measured the output signal on
the axons of specific ganglion cells connecting the retina to the LGN.
They noticed that some cells were very sensitive to what they called
“on center, off surround” areas, while other cells were sensitive to “off
center, on surround” areas. This meant that when the spot of light was
at the center of the cell’s receptive field, the “on center” cell fired a
long burst of signals. As the spot moved off the receptive field, the cell
moved from steady firing to not firing.
 They also changed the white spot image to a white spot with a dark
center, like a donut shape. As they moved the donut shape around the
screen, they noticed that when the shape entered the receptive field of
some ganglion cells, the cells fired when the dark spot was at the center
of the receptive field. As the dark center moved off the receptive field, the
cells stopped firing. Furthermore, for both the on-center and off-center
cells, they tested what would happen if the center of the spot increased
in size to encompass most of the cell’s receptive field. That is, for the
on-center/off-surround cells, they increased the size of the bright spot,
causing the receptive field of the cell to only see the “on” portion of the
image as the off-surround area moved outward off the cell’s receptive
field. In this case, the cell stopped the steady firing. When the researchers
reduced the size of the bright spot so that the cell perceived the on-center
and off-surround area again, the cell went back to a steady signal. They
encountered the same results for off-center and on-surround cells. As the
dark spot increased to lose the on-surround area, the cell stopped firing,
and as the dark spot’s size was reduced and the on-surround area came
back into the cell’s receptive field, the firing commenced again.
 A decade later in the 1960s, David Hubel and Torsten Wiesel
extended these experiments to show that on-center and off-center
information perceived by individual ganglion cells in the retina was
combined in the LGN and V1 area of the visual cortex to construct
bars, or edges, of on-center/off-surround and off-center/on-surround
sensitivity. Do you realize what this means? This shows how complexity

 HELLo, PAnDA! 113

builds as information moves from layer to layer from the retina to the
brain (fig. 2.6). First, the eye perceives discrete points of white on dark
background or dark on white background. Later, these individual data
points get combined to build more complex information, such as edges.
Furthermore, the Hubel and Wiesel experiments showed that special
types of cells in the V1 area of the visual cortex called complex cells used
the information gathered by ganglion cells at the retina to construct
edges of different orientations. That is, some complex cells are sensitive
to horizontal edges while other cells are sensitive to diagonal edges. We
have already discussed the importance of edge detection in the context
of computer vision. We now see that vision in biological systems, or at
least in mammalian organisms, also starts with edge recognition. For
their work on visual processing in biological visual systems, Hubel and
Wiesel received the 1981 Nobel Prize for Physiology or Medicine.

+
_

+
_
+
_

+
_
+
_

...

+
_

+
_
+
_

+
_
+
_

...

+
_

+
_
+
_

+
_
+
_

...

.

.

.

...

......

...

.

.

.

Retina LGN Visual Cortex

Receptive Fields LGN Cell

Simple Cell

Complex Cell

+ : on-response area

– : off-response area

: excitatory synapse

Figure 2.6 Hubel and Wiesel’s hierarchy model. Information flows from the retina to
the brain’s visual cortex in a cat. It’s hard not to see a strong resemblance to artificial
neural networks. Author’s rendering based on Hubel and Wiesel 1962.

114 Is tHE ALGorItHM PLottInG AGAInst us?

 The primary visual cortex (V1) is by far the most studied region
of the brain’s visual cortex. This area is divided into six different
layers, 1 through 6. The estimated number of neurons in the primary
visual cortex of an adult human is around 140 million. The primary
visual cortex is the main receptor of information from the LGN and
retina. It is great at pattern recognition. As information proceeds
into the latter regions of the visual cortex (V2–V5), higher-order,
more complex information is captured. Although these regions have
not been studied as much and are not as well understood as the
primary cortex, it is understood that such global concepts as faces and
textures are recognized in these latter regions. These are called higher-
order concepts because they are more complex than pattern or edge
recognition. After all, to recognize a whole face, we need to combine
many more primitive concepts like edges, color, and even depth. This is
an important discovery, so it bears repeating. There are complex cells in
the visual cortex that are sensitive to complex structures, such as faces,
in their receptive fields. This means that if we measure the output of
these cells, we notice a spike in their signal when a human face crosses
their receptive field. This is surprising because, intuitively, we would
expect that a single neuron would be too simple a device to detect a
complex feature like a whole face; it shows the hubris in our intuitions
and why sometimes to make progress, we must abandon all that makes
sense. Indirectly, we also know that complex structures like faces are
handled by special components in the brain from studying a condition
known as prosopagnosia. Prosopagnosia typically affects people from
birth, and it is a condition whereby the afflicted individual is unable
to recognize faces but has otherwise perfect vision. These studies have
found evidence that faces are detected by very specialized cells or
regions of the brain.
 Now that we have a basic understanding of how vision works in
both computer and biological systems, we can spend a few minutes
discussing some of the parallels between biological and artificial vision,

 HELLo, PAnDA! 115

as well as what we have been referring to as emergent properties of
neural networks. In figure 2.6, we saw Hubel and Wiesel’s hierarchy
model of the visual system of a cat. Nearly all image-processing
operations we have discussed thus far, including most artificial neural
network architectures, involve weighted sum operations—that is, an
operation where the values of an input signal to a neuron (such as the
pixel values in an image) are multiplied by the weights of the neuron’s
input connections, and the results are summed. Hubel and Wiesel
proposed that weighted sum operations are also present in the neurons
of the cat’s (and by extension our) visual cortex.
 Experimental studies involving complex cells later found evidence
that suggests that weighted sum operations do indeed happen in some
neuron cells in the brain. As we have already seen, both biological
and artificial neural networks are composed of layers of neurons with
connections between the layers and information flowing from layer
to layer. Vision in the mammalian visual system starts at the eye, with
the first few layers of neurons, the ganglion cells, detecting simple on/
off regions. These signals are processed by the primary visual cortex to
form edges and perform pattern recognition.
 We saw with the CNN that a similar phenomenon arises in artificial
neural networks. The first few layers are sensitive to edges and simple
patterns. As we move deeper into the CNN, we find that the latter
layers contain neurons that respond to more complex information.
We find neurons that are responsive to whole faces, to eyes, and to
texture information, just like we saw with biological systems! What is
really fascinating is that CNNs were not predesigned to perform edge
recognition in the first layers and detect higher-order information, like
whole faces, in the latter layers. This is an emergent property of neural
networks. In fact, we get the same distribution of information (the first
layers responsive to edges and latter layers building complexity) for any
neural network architecture we build, from CNNs to MLPs. So how
is it possible for artificial systems to break down visual constructs in a

116 Is tHE ALGorItHM PLottInG AGAInst us?

similar manner to biological systems without being explicitly designed
to do so? The definitive answer to this question is not really known.
 Before we proceed, take a moment to digest what we have just
said. It is quite possible that thus far in your life, you have never
encountered an example of a system built by humans that performs a
set of tasks that were not designed a priori. When I started researching
and learning about neural networks, I found that the stuff we don’t
know about these systems (the stuff whose presence itself is especially
remarkable because we build these systems) is far more interesting
than the things we do know. So let’s go back to our question: How is
it possible that these emergent properties in artificial systems arise to
resemble biological ones? As I said, we do not know for sure, but an
explanation that I like is as follows: we build complex systems from
simple rules, and as the system grows in size, the growth in complexity
will generate behavior we could not have predicted a priori.

Take the Game of Life as an example. The Game of Life, created
by the British mathematician John Horton Conway in 1970, is not
really a game where players compete to reach a certain goal; instead, it
is a simulation of a world that is bound by only four rules. The world
starts with a grid of cells and proceeds based on the following rules:

1. Any live cell with fewer than two live neighbors dies
of underpopulation.

2. Any live cell with two or three live neighbors lives on
to the next generation.

3. Any live cell with more than three live neighbors dies
of overpopulation.

4. Any dead cell with exactly three live neighbors becomes
a live cell.

Life begins by selecting a few cells in the grid and setting them to
“alive” and then letting the simulation run for a number of generations

 HELLo, PAnDA! 117

where those four rules are applied for each generation. Following just
four simple rules, incredibly complex patterns are generated. The most
common pattern is called “the glider,” which consists of a group of cells
that move around the grid. There is a whole Wikipedia page dedicated to
interesting Game of Life patterns that people have found. Interestingly,
new patterns are still being found by Game of Life enthusiasts.
 So what does the Game of Life have to do with vision? When it comes
to computer vision and artificial neural networks, the important part is
that the system is built from simple rules. That is, if we want to detect
elephants in an image, we do not set out to break down concepts of what
makes elephants unique (long trunk, big ears) and build an algorithm
around detecting those. Instead, we do not make any assumptions as to
how we are going to detect elephants. We start from an array of discrete
points of light (pixels) and build an algorithm to learn to extract and
combine the features that will determine whether there is indeed an
elephant in the image. It might be that the best way for a system to detect
visual information from first principles is to start by detecting edges and
then putting those edges together to build more complex features. In
fact, this might be an unavoidable consequence of building knowledge
from a set of pixels (or photon detection in our eyes), considering that
regardless of the neural network architecture we design, we still get edge
and pattern recognition at the first layers. This makes it clear that the
distribution of features among the layers is not dictated by the network
architecture itself but by some fundamental truth about vision systems.
Amazingly, our artificial neural networks learn this through their training
process by minimizing a loss function, and biological visual systems
converged on a similar approach through evolution.
 Feature distribution is not the only emergent property of neural
networks resembling biological systems. When we look at the features
themselves, we notice other interesting similarities. We already know
that the first layers of a neural network encode edge information.
That is, the neurons in the first layers of the networks are sensitive to

118 Is tHE ALGorItHM PLottInG AGAInst us?

edges in different orientations. Some neurons (remember: in a CNN,
a neuron is a 3 × 3 filter) are sensitive to light-on-dark edges. Other
neurons are sensitive to edges defined by color pairings (e.g., red on
green and blue on yellow). What is quite interesting about these color
pairings is that red/green and blue/yellow are closely associated in the
mammalian visual system as well. As we previously discussed, people
who suffer from color blindness have trouble seeing colors in the red/
green or blue/yellow range, with red/green deficiency being the most
common form of color blindness. Yet here we have artificial neural
networks discovering that it is important for vision systems to encode
contrast information between red, green, yellow, and blue light as
well. If artificial neural networks can discover vision techniques that
resemble biological ones, what other similarities could exist between
the two vision systems?
 Optical illusions cause the brain to see things that are not really
there. Could artificial neural networks also fall victim to optical
illusions? You might be surprised to learn that the answer is yes—
and in much more bizarre ways than biological systems. Researchers
have discovered that by understanding how neural networks are
trained, one can generate images that can have the effect of fooling
artificial neural networks. These are called adversarial images. We
briefly discussed that artificial neural networks are trained by
minimizing a loss function. That is, artificial neural networks are
trained by modifying the internal connections so as to minimize the
prediction errors for each iteration of training. Researchers realized
that if the model parameters can be modified by the training process
to minimize the prediction errors, then working with the opposite
intention, where the model parameters are modified during training
to increase the prediction errors, might yield interesting results.
 For example, we could use the same principle to modify the
input image in such a way as to maximize the error for each iteration
of training. This can result in very interesting classification errors

 HELLo, PAnDA! 119

where a neural network might predict that an image that looks like
random noise is a cat, an elephant, or any one of the categories it is
trained to predict (fig. 2.7). Researchers have also discovered that
some images can fool artificial networks of different architectures
and training. A recent research paper found that some images that
can fool artificial neural networks can also fool humans! To be fair,
the researchers had to place a few constraints on the system to fool
humans. These constraints help shed more light on the differences
between human and artificial perception. For example, to fool the
humans in the study, the images were flashed on a screen for a very
brief period, and the human subjects had to quickly predict the
category of the images they were seeing. The images could only be
shown for a very brief period, or the humans would quickly realize
the true nature of the images.
 You see, the human visual system is much more sophisticated
than our current artificial neural networks. For one, there are many
more millions of neurons in the human visual cortex, with orders of
magnitude more connections, than in artificial neural networks. The
neural networks responsible for vision in humans are also not simple
feed-forward networks like the artificial networks we have discussed.
Feed-forward neural networks have connections between layers with
information flowing in one direction from the first layer down to the
last, hence “feed forward.” The neural networks in our brains have
connections that loop back between the layers and form recurrent
loops between the layers as well. This has the effect of reenforcing
certain features and makes our ability to perceive the world around
us more robust. When trying to fool humans and artificial neural
networks using the same images, the researchers minimized the effect
of recurrent connections in our brains by letting the human subjects
see the images for only a brief time. So what does this experiment
teach us? What is the purpose of showing that images that can fool
artificial neural networks can also fool humans?

120 Is tHE ALGorItHM PLottInG AGAInst us?

robin cheetah armadillo lesser panda

“panda”

+ =

57.7% confidence

“gibbon”
99.3% confidence

Figure 2.7 Two different kinds of artificial optical illusions created by different
researchers that have been able to fool neural networks. Top, four examples of noisy-
looking images that caused a well-trained neural network to predict “robin,” “cheetah,”
“armadillo,” and “lesser panda” for each sample. Bottom, an image of a panda: the trained
neural network predicts that this is an image of a panda with 57.7 percent confidence;
researchers then modify the image by adding a small amount of noise, resulting in
an image that looks no different to us but causes the neural network to reclassify the
image as a “gibbon” with 99.3 percent confidence. Image of “panda”/“gibbon” from
Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, “Explaining and Harnessing
Adversarial Examples” (poster presented at the Third International Conference on Learning
Representations, San Diego, CA, 2015), https://doi.org/10.48550/arXiv.1412.6572. Image
of noisy “robin,” “cheetah,” “armadillo,” and “lesser panda” from Anh Nguyen, Jason Yosinski,
and Jeff Clune, “Deep Neural Networks Are Easily Fooled: High Confidence Predictions for
Unrecognizable Images,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 427–36 (Washington, DC: IEEE Computer Society, 2015).

 Images that can fool neural networks of different architectures,
including biological ones, suggest that when it comes to understanding
vision and emulating it in artificial systems, perhaps we are really onto
something. If the same image can fool biological neural networks and
artificial neural networks that look vastly different, even when the

 HELLo, PAnDA! 121

artificial neural networks were trained using different loss functions,
it might mean that the networks are all converging on a fundamental
set of principles for interpreting the world. Sure, the rules they are
discovering aren’t perfect—hence the incorrect predictions—but it is
exciting to see artificial systems emulating biological ones even when
the results are incorrect.

In this chapter, we set out to understand neural networks in the context
of computer vision. We used a CNN as our conduit for comparing
artificial and biological vision. We learned how features are extracted
from an input image through each layer of the CNN down to the
classifier. We now understand that artificial neural networks work by
discovering the probability distribution of the features that make up
their training data and use the learned distributions to make predictions
about new samples.
 It is encouraging and very exciting to see the similarities between
biological and computer-vision systems—especially when the
similarities are emergent, as if we suddenly, in our half-blind stumbling
through an uncharted cave, happened to hit on a gold vein. These
similarities, and the results we have achieved, encourage us to continue
in the pursuit of the perfect neural network (is there one?). Today,
artificial neural networks have been able to outperform humans in
many specific categories, with “specific” being an important qualifier.
 We can train a neural network to detect melanoma on a data set
of 30,000 images from a hospital in Toronto, and that neural network
will outperform a human pathologist by an accuracy of at least 10
percent against the same data set. But now grab a few samples from
a hospital in Denmark that happens to prepare the biopsy slides
in a slightly different manner (e.g., using different tissue-staining
techniques), and the trained neural network that outperformed the
human against the Toronto slides might be completely useless against

122 Is tHE ALGorItHM PLottInG AGAInst us?

the Denmark samples—yet the human pathologist will be just fine.
Examples like these show us that, although we have come a long way
in our pursuit of artificial vision, humans still see the world differently
from neural networks. We are definitely better at generalizing concepts.
When we teach a child a new word or a new class of objects—say we
teach her what a soccer ball looks like—we do not need to present her
with 10,000 images of soccer balls. Somehow her brain is capable of
understanding the fundamental features of a soccer ball from a single
sample. The child will (with some additional exposure to far fewer than
10,000 data points) be able to recognize any design, size, and color of
soccer balls. Artificial neural networks are not there yet. It might be that
simply modeling distributions based on a set of samples is destined to
biases toward the training data, dooming the algorithm to excel only in
specific settings. But research is ongoing, and if history is an indication,
we will solve that problem too.
 We can now answer the burning question of how similar computer
vision is to human vision and, by extension, how similar artificial neural
networks are to biological ones. Are artificial neural networks akin to
some poor soul forsaken to a canned existence inside the Matrix? As of
today, neural networks exhibit many elements also found in biological
information processing, but at their core artificial neural networks are
modeling distributions by minimizing a loss function. Minimizing a
single loss function might be too simple an approach if our goal is to
mimic the human brain. We saw the downfalls of minimizing the loss;
the opposite is also possible. We can maximize the loss and get funny,
bizarre results from our predictions. Our brains appear more robust at
handling and processing input data.

In the next chapter, we dive deep into distributions and the decision-
making process of neural networks. We learn more about loss functions
and see, step by step, how neural networks can be trained using gradient
descent through back propagation. This is, without a doubt, one of the
most elegant algorithms in computer science.

We are slowly uncovering the secret powers of neural networks.
The last two chapters described neural networks as funnels of

information where the input data is compressed into a latent vector—a
vector representation of the input. Then, the network performs either
classification or some type of linear regression to get our output (fig.
3.1). In this chapter, we learn more about this last bit by discussing the
mathematical assumptions and tools we use to classify or to analyze
data samples to forecast some trend.

This is the chapter where we learn what makes neural networks
tick. Our goal is still to find out what an AI system is truly thinking.
This is important because it is intrinsically interesting and inspiring
that a species not far removed from apes has created something
that can be confused with intelligence. It is also important because
anything new can be scary, and fears of AI have been explored and,
to some extent, fed by Hollywood for decades (with movies like the
Terminator, the Matrix series, and, more recently, Ex Machina). But
concerns with AI and intelligent robots are not new and did not
start in the latter part of the twentieth century; already in the 1940s,
the science fiction author Isaac Asimov warned about the possibility
of a machine takeover. As prophylaxis against such a scenario, he
introduced the Three Laws of Robotics:

3

ANSWERING AN
AGE-OLD QUESTION

124 Is tHE ALGorItHM PLottInG AGAInst us?

1. A robot may not injure a human being or, through
inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human beings
except where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such
protection does not conflict with the First or Second Law.

More recently, AI entrepreneurs like Elon Musk have voiced similar
fears of a Terminator-like machine rebellion if we don’t constrain our
current accelerated pace of AI research and adoption. AI researchers,
on the other hand, seem less worried about machines deliberately
deciding to take over the world and more concerned with the misuse of
AI by humans, as discussed in Scientific American’s “What an Artificial
Intelligence Researcher Fears about AI.”

To really understand what is scary about AI and how we avoid
dangerous consequences, we should first attempt to understand AI. In
this chapter, we explain AI algorithms as probability estimators.12 To
do that, we learn about probability distributions and about linear and
logistic regression algorithms. We also look more deeply at how neural
networks are trained and how the model parameters are adjusted
using calculus. You will not need to understand the math to get the
message of this chapter, but it can be quite beneficial to at least try
to understand the math. In the next chapter, we address the concerns
around misuse of AI. Here, we discuss the fundamentals of how neural
networks operate. After reading this chapter, you will have the tools
to develop an informed opinion for the flavor of concern that makes
sense to you.

12. For simplicity, I am using the terms probability and likelihood interchangeably, though
there are technical differences between them.

 AnsWErInG An AGE-oLD QuEstIon 125

Neural Network

Latent Vector

Input Sample

Output

Latent Vector

Output

Classification or numerical
prediction

Figure 3.1 A neural network as a funnel of information. Information is input at the
top and compressed through the network down to a latent vector representation. The
output of the network is then typically calculated by performing linear regression (if
predicting a continuous value) or logistic regression (if performing some classification).

Now that we have built a functional understanding of two of the
most common classes of neural networks—the MLP (fully connected
neural network) and the CNN (convolutional neural network)—we are
going to dig a little deeper and peek into the soul of these algorithms.
We have seen how a neural network consists of an arrangement of
neurons with connections that are assigned special values, or weights.
We understand that these weights are adjusted during the training phase
of a neural network, and we know that these adjustments are where
the magic happens. As we adjust the weights of the neural network, its
predictions begin to get more and more accurate. And although we have
skirted around the training process and briefly discussed a loss function
as a measure of success, our discussion has been very superficial. Why is
it that minimizing a loss function should cause a complex mathematical
function (as discussed, we can consider a neural network a mathematical
function) to map a set of input features to a class of desired outputs,
especially for data samples it has never seen before? We have thrown
around the term probability distribution and explained that neural

126 Is tHE ALGorItHM PLottInG AGAInst us?

networks are in fact learning the parameters of a probability distribution
from the data samples in a training data set. We have said, or at least
implied, that once the distribution is understood, generating an output is
simply the process of sampling from the learned distribution. But do we
really understand what this means? Do we understand what probability
distributions are and why they are helpful?

Probability distributions are so crucial that the process of creating
a loss function for training a neural network is the most important
aspect in the design phase of a neural network. By now, researchers
have identified loss functions that work for many of the use cases where
we want to employ our neural networks, and most software engineers,
when creating a neural network to solve a specific problem, just choose
a loss function that has been proven to work for that class of problems.
But identifying a new loss function or improving an existing one
involves defining the problem we want the neural network to solve, in
terms of probabilities. That is, we want the neural network to calculate
the probability that a set of features for a given sample belong in each
one of the categories defined by the network’s outputs. This is the bit
of magic that allows the neural network to work beyond the training
data set. If we were to embark on defining a new loss function without
considering how it could maximize the probability that the input
features belong in the desired output category, we might find that
our loss function produces weight values that lead nowhere or ones
that only work for the training data set but do not generalize to real-
world data. So, to better understand these important facets of artificial
intelligence and its continuing development, let’s dive into probability
and its loyal companion, statistics.

At the heart of any algorithm that aims to predict an outcome
for a data sample—for example, predicting the price of a house given
some information about that house or predicting the species of a
certain bird given the length of its beak—is probability and statistics.
All the artificial intelligence algorithms we use today, including

 AnsWErInG An AGE-oLD QuEstIon 127

neural networks, use concepts from probability and statistics to
make predictions on data. Why use statistics? Statistics is the best
tool we have for making sense out of data. Everything we do in our
lives generates data: withdrawing money from our bank, buying
food from the grocery store, the type of food we buy, the amount of
money we spend every month, and the movies we watch on streaming
platforms. When information like this is kept together in a database
and attached to an individual, it provides an excellent description of
what that individual is like and their day-to-day habits. Today, data is
one of the most highly valued commodities; companies like Facebook
and Google earn billions of dollars off the information they maintain
about you. And it is all thanks to probability and statistics. Statistics
provides a toolbox for manipulating and extracting information from
data. Based on information about events in the past, statistics helps
build a timeline or relationship between those events. When we
combine data with concepts from probability theory, we are able to
predict future outcomes based on past events.

For example, most online retailers or even streaming platforms
are well known to employ automated recommender systems aimed
at suggesting new products you should buy or new movies or TV
series you should watch. And you have probably noticed that, for
the most part, they tend to be disturbingly good at suggesting items
you would like. They can do this by building a model of you. By
keeping a collection of data points over time—which items you buy,
which movies you watch—they can predict what items you might be
interested in. As we will see, designing a system to predict which shoe
brand I am most likely to buy is not much different from designing a
system to predict house prices or classify images of cats.

All artificial intelligence problems start with a data sample and a
question about the sample. A data sample might be a single house in
a data set of different real-estate listings. Let’s say the house has four
bedrooms. The question might be: “How much is the house worth,

128 Is tHE ALGorItHM PLottInG AGAInst us?

given the number of bedrooms?” If we have a database somewhere
relating the number of bedrooms per house to property value, we
could build an algorithm that is able to analyze the data in the
database and extract the information we want to learn. What type
of information might this be? Well, we would want our algorithm to
learn a relationship between the number of bedrooms and property
value. By learning this relationship, the algorithm could then apply
this information to a brand-new house it has never seen and guess
the price of the house based on the number of bedrooms of that
new property. But we are getting slightly ahead of ourselves. To
understand how artificial intelligence systems work, we need to
understand probability distributions.

In this chapter, we focus on three well-known probability
distributions: the binomial distribution, the normal or Gaussian
distribution, and the Bernoulli distribution. If you haven’t heard these
terms before, don’t worry; we cover them below. We do not get too
deep into the mathematics, but it is important to understand a few
basic concepts to make progress. We only go as deep as necessary
to conceptually understand how we can make predictions about the
future, based on information from the past. Here we go.

PROBABILITY DISTRIBUTIONS AND COIN TOSSES

What is a statistical model? A statistical model is a set of assumptions
we make based on our current data, to help us make predictions about
future data. The purpose of AI is to learn a set of good assumptions
about existing data so that we can make predictions about future
data. If this sounds like the definition of a statistical model, it is not
a coincidence. So how do we make those assumptions? The answer
involves probability distributions. Before we go any further, let’s
examine what we mean by probability distribution.

 AnsWErInG An AGE-oLD QuEstIon 129

 Suppose we conduct an imaginary survey to find out the average
height of fifteen-year-old boys. Let’s say that we go out and survey
one thousand boys, and we find the distribution of boys per height as
represented in table 3.1.

Table 3.1 Distribution of Boys according to Height in a survey

Height (m) Number of boys

1.64 30

1.66 80

1.68 200

1.7 400

1.72 220

1.74 50

1.76 20

 Our distribution suggests that most of the boys in our survey
are around 1.7 meters tall. If we build a histogram to visualize our
data (fig. 3.2), we notice that the histogram resembles a rough bell
shape, and it shows that most of the information is stored around
the 1.7-meter mark, which happens to be the average, or mean, of
our data. Our histogram shows sharp jumps between the different
measurements in our survey. The sharp jumps are due to our survey
being small (and imaginary!) so that although we can conceive that
some boys might measure anywhere between 1.64 and 1.66 meters,
we didn’t find any in our survey. Using this information, we can also
create a probability distribution graph that shows the probability that
a fifteen-year-old boy measures any of the possible heights in our
distribution (fig. 3.3).

130 Is tHE ALGorItHM PLottInG AGAInst us?

0
50

100
150
200
250
300
350
400
450

1.64 1.66 1.68 1.7 1.72 1.74 1.76

N
um

be
r o

f P
ar

tic
ip

an
ts

Height (m)

Figure 3.2 Histogram of one thousand participants in a survey, arranged according
to height.

Pr
ob

ab
ili

ty

Height (m)

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
1.64 1.66 1.68 1.7 1.72 1.74 1.76

Figure 3.3 Probability distribution for each possible measurement (orange bars). The
blue line shows the continuous probability for the height of the surveyed participants
in the 1.64–1.76 m range.

 To better represent the gaps in information that our survey might be
suffering from, we could draw a continuous line that connects the edges
of our histogram bins. When we do this, we can see a graph that tells us
that most fifteen-year-old boys are on average 1.7 meters tall, and that
lets us predict the probability of a fifteen-year-old boy being anywhere

 AnsWErInG An AGE-oLD QuEstIon 131

in the 1.64-meter to 1.76-meter range. A formal way of describing
the information we have just seen is to say that figure 3.3 represents a
probability distribution for a population of fifteen-year-old boys based
on their height. In our case, the size of our population is one thousand
boys. And the mean height of that distribution is around 1.7 meters.
Why is it called a probability distribution? Because the graph shows
the continuous probability that a boy is any height in the range of 1.64
to 1.76 meters. Another way to state this is that the graph shows how
the probabilities of all possible height measurements for the surveyed
participants are distributed in the range of 1.64 to 1.76 meters.

Why is this information important? Suppose I tell you that there
is a boy who was not among the one thousand boys surveyed. All we
know is that he is fifteen years old. If I ask you to guess his height based
on his age, what would you guess? Given that you have seen our survey
and data set, you would probably guess that he is 1.7 meters tall. If
you did, then fantastic! You have just designed your first AI system.
Figure 3.3 tells us that there are other possibilities for his height; 1.65
meters and 1.73 meters are both possibilities within our distribution.
But given that we don’t have any more information than his age, and
we must pick a single value, picking the average is our best option,
and it’s a pretty good option. We might be off in a few cases, but if we
have to predict the height of a group of boys, we can expect that by
picking 1.7 meters we will be right more often than if we just randomly
guess a height. Intuitively this feels right. It feels right because we are
used to thinking in terms of average. It is natural for humans to make
decisions based on averages of experiences. It even makes sense from an
evolutionary point of view.

Imagine that we are back on the African savanna two million years
ago. We have left the comfort and safety of the trees and descended its
branches for the last time. Before us stand the open grasslands, full of
new opportunities and new dangers. To succeed, it will help us to learn
from the average of our collective experiences. If one of our friends runs

132 Is tHE ALGorItHM PLottInG AGAInst us?

down the field and gets eaten by a lion, and we immediately change
our course of action based on this single case, our progress is going to
be limited. To leave the trees behind, we must be able to accept new
dangers, and we can’t give up on a reward—crossing an important river
or chasing a young antelope—simply because a single negative event
has occurred. Similarly, if every one of our friends who tries to cross
the river dies, and we don’t adjust our behavior, we are not going to
get very far. It is evident that there is a heavy cost to living on the
edge of our distribution. One extreme is that we immediately change
strategies as soon as we encounter a bad outcome (our friend is eaten by
a lion). This is costly because, on the African savanna, bad experiences
are going to happen often enough that if we change course every time,
we are not going to make much progress. The other extreme is that if
we keep encountering bad outcomes (our friends drowning crossing
a river) and we do not recognize that we must change strategies, the
cost is that we are all probably going to die, and we won’t learn much
in the process. A better approach would be to stay in the middle of
the two extremes and adjust strategies only after a number of negative
outcomes. Another way to say this is that a good strategy would be to
continue doing the things that work most of the time.
 What our ancestors were doing on the African savanna was
building a statistical model using a learned probability distribution,
just like we did to predict the boys’ height using the information from
our survey. We are going to come back to these concepts many times
throughout the book because this is the essence of what every artificial
intelligence algorithm does. Every artificial intelligence algorithm
is trying to build a statistical model by learning the parameters of a
probability distribution function. Different AI algorithms use different
techniques to learn those parameters, and some are more successful
than others, but they are all trying to build a statistical model. Let’s
look at another example of probability distributions, using a set of
coin-flipping experiments. Once we understand probabilities, we will

 AnsWErInG An AGE-oLD QuEstIon 133

see how the last layer of a neural network leverages a loss function to
learn the probability distribution for the data in a training data set.

For this experiment, we assume that we have a fair coin, where the
probability of getting tails is 50 percent each time we flip the coin. We
are going to define our experiment as consisting of ten flips. That is, a
single experiment involves flipping a coin ten times. Next, we define
a variable x as the number of tails we can get in each experiment; in
other words, x refers to the number of tails we can get in ten trials
for each experiment. Then, we are going to construct the probability
distribution for each possible outcome of x.

We can ask what the probability is that we get zero tails in an
experiment of ten trials (our ten flips). The probability that we get
zero tails, which we can formally define as P(x = 0), is the probability
that every single flip in the ten trials lands heads. Out of all possible
combinations of heads/tails in ten coin tosses, there is only one
arrangement that produces zero tails. That is the case where all ten
tosses land heads. The probability of this outcome is . Remember
that each trial only has two possibilities—heads or tails—and we are
conducting ten trials in our experiment. This means that there are 2 × 2
× 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 1,024 possible ways to combine heads
and tails in an experiment of ten coin tosses.

Let’s illustrate what we mean with the following description of
possible outcomes in ten coin tosses:

Possible outcome 1: HHHHHHHHHH → 0 tails in this
experiment, all heads.

Possible outcome 2: THHHHHHHHH → 1 tail in this experiment
on the first trial.

Possible outcome 3: HTHHHHHHHH → 1 tail in this experiment
on the second trial.

134 Is tHE ALGorItHM PLottInG AGAInst us?

Possible outcome 4: HHTHHHHHHH → 1 tail in this experiment
on the third trial.

Possible outcomes 5–1,023: …

Possible outcome 1,024: TTTTTTTTTT → 10 tails in this
experiment, no heads.

 The above list of possible outcomes shows that—accounting
for the fact that each trial can be a heads or a tails and knowing that
our experiment consists of ten trials—we have 1,024 possible ways
to mix heads and tails. Going back to our variable x, we can list the
probabilities for each number of tails (our desired outcome) in a given
experiment.

P(x = 0) = → Probability that we get 0 tails. There is only 1 outcome
that can achieve this: HHHHHHHHHH.

P(x = 1) = → Probability that we get 1 tails. There are 10 outcomes
that can achieve this (shift T to fill each position once).

P(x = 2) = → Probability that we get 2 tails.

P(x = 3) =

P(x = 4) =

P(x = 5) =

P(x = 6) =

P(x = 7) =

P(x = 8) =

P(x = 9) =

P(x = 10) =

 AnsWErInG An AGE-oLD QuEstIon 135

 If you don’t quite understand how we can calculate the probabilities
for each outcome in our experiments, don’t worry; you just need to
know that it is possible to calculate the probability for each outcome.
And from those probabilities, we can build a probability distribution
(as we will see next). If you are curious, however, as to how you can
easily calculate those values without having to list all 1,024 possibilities
and then counting each desired outcome by hand, the way to do it is to
use combinatorics. Most calculators have a function that looks like nCr.
To calculate the probability of getting six tails in ten trials, P(x = 6), we
input 10C6, which equals 210. Then, we divide by the total number of
possible outcomes (1,024). All right, now we can move on to building
our probability distribution.

If we look at the orange bars of figure 3.4, we can see the discrete
probability distribution for each outcome of x. It is called a discrete
distribution because for each specific outcome, there is a single
probability that describes the likelihood of that outcome. In statistics,
the probability of different kinds of events occurring can usually be
described by one of several well-known probability distribution
functions. An experiment that consists of many trials and only has two
possible outcomes per trial—success or failure (i.e., heads or tails)—
can be described using the binomial distribution.

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Po
ss

ib
le

 O
ut

co
m

es

Number of Tails

Figure 3.4 The probability distribution function for the coin-flipping experiment.
The x-axis shows the number of tails we can get in an experiment comprising ten coin
flips. The y-axis shows the probability of flipping any number of tails in ten trials.

136 Is tHE ALGorItHM PLottInG AGAInst us?

THREE DISTRIBUTION TYPES

Here is why we have worked so hard to get to this point. It turns out
that binomial distributions are very important in statistics because
they are found to describe many processes in nature, so understanding
binomial distributions can be a powerful tool in helping us understand
nature. Remember, the purpose of artificial intelligence is to use the
power of computer systems to extract information from data, to make
predictions about future data. Probability distributions help us visualize
the likelihood of each possible outcome in our experiments so that we
do not have to conduct every experiment. To use our coin-flipping
example: by knowing the probability distribution of possible outcomes
for ten flips, we do not have to perform hundreds of experiments
where we flip a coin ten times to empirically discover all the possible
combinations of heads and tails. If we are asked to calculate the
likelihood of observing six tails in an experiment of ten coin flips, we
can just consult our probability distribution function. In general, if
we know the likelihood of each possible outcome, then we understand
our data enough to make predictions about future samples. This is the
strength of probability distributions.
 Why is this important in AI? Artificial intelligence algorithms
are essentially making informed guesses about new data samples. Let’s
take forecasting algorithms for securities trading as an example. These
algorithms are tasked with predicting the future price of a stock, but
how can they do that? There is no magic ball that can tell us what the
future looks like. So how could these algorithms make any predictions
about events that have not yet occurred? What these algorithms have
is data. They are trained on stock market data using past transactions
and stock prices, and if the data is good and extensive, they can use
this data to learn to recognize trends that can help to predict future
market fluctuations and stock values. Imagine we know the probability
distribution of possible prices for a given stock for any day of the year.

 AnsWErInG An AGE-oLD QuEstIon 137

To predict the price of the stock for next Tuesday, all we have to do is
sample from the distribution—that is, pick a price for the stock that,
according to our probability distribution, is highly likely to be the stock
price next Tuesday. To be clear: this is still a guess, but it’s an informed
guess. Artificial intelligence algorithms are constantly making guesses.
When the algorithms are well trained, these are guesses based on highly
probable outcomes.
 In the medical field, artificial intelligence algorithms are used to
analyze patient information to predict the likelihood that a patient
is suffering from a given disease or will develop the disease at some
point in the future. For instance, researchers are investigating the use
of AI algorithms in the medical domain to predict the likelihood of a
patient developing heart disease based on historical data. To do this,
the hospital maintains data sets containing such patient information
as age, gender, profession, height, smoking habits, history of heart
disease in the family, and other information, along with an indicator of
whether the patient suffers from heart disease. Similar to how we used
the data from our survey to predict the height of fifteen-year-old boys,
by analyzing the data from existing patients, the algorithm can learn
relationships between each piece of information describing the patient
and whether the patient has heart disease. Later, when a new patient
walks in, a physician can ask the algorithm to predict how likely the
patient is to suffer from heart disease given their age, gender, smoking
habits, and other history. And it is all based on the algorithm’s ability
to learn the probability distribution for the likelihood of a patient
developing heart disease for each possible combination of features for
that patient (age, gender, smoking habits, etc.).
 Whether we are trying to predict a person’s height or determine
the trajectory of a hurricane or classify images of birds into different
species, there is a probability distribution that describes the underlaying
data, which we can use to build a model. The binomial distribution
is a discrete distribution because for each possible outcome there is

138 Is tHE ALGorItHM PLottInG AGAInst us?

a specific probability of that outcome occurring. The probability
of getting only one tails in ten trials is a specific value. But not all
distributions are discrete; some are continuous. In fact, we have already
seen an example of a continuous distribution. In our example of
predicting the heights of teenagers, we saw a continuous distribution.
It is continuous because, although the mean of the distribution is 1.7
meters, no two boys from our survey are likely to have measured the
exact same height. Consider that measuring someone’s height is at best
a good approximation. We have to account for the volume of hair on
their head and how that might affect our measurement, the fact that
not everyone stands perfectly straight, and so on. So a measurement of
1.7 meters is at best an approximation, with some boys being 1.7005
meters and others being 1.6999 meters. When the range of possible
outcomes comprises continuous values, the distribution is a continuous
distribution. The probability distribution from our heights example is
called a Gaussian, or normal, distribution. The binomial distribution is
the discrete version of a normal distribution. As we increase the number
of trials in our experiment (if instead of ten coin flips, we perform one
million coin flips), the binomial distribution will eventually approach
the normal distribution (see the blue line in fig. 3.4).
 The normal distribution is defined by two parameters, the mean
(which we have already seen) and the variance. The variance is a measure
of how much the data varies from the mean. A normal distribution
with low variance means that the data is closely aligned to the mean;
in other words, most samples in the data are close to the mean. On the
other hand, a distribution with high variance means that the data is
spread out away from the mean.
 Knowing the parameters of a probability distribution is very
powerful because it means that we can sample from the distribution.
If we know the parameters of our distribution, we can pick values that
conform to that distribution to generate new data. It also means that
we can evaluate new data by seeing where it falls in our distribution.

 AnsWErInG An AGE-oLD QuEstIon 139

Imagine we are taking part in a trivia night, and we are asked the
following question: “John M., born on May 2, 1976, won MVP in
which major league sport?” One of our friends at the table thinks he
knows the answers. “It must be hockey!” he says. But before you let
him answer, someone else at the table happens to be a statistician who
did a study on NHL players, and she remembers two key pieces of
information: the mean and variance for the probability that NHL
players are born on a given day of the year. And she knows that the
mean of that distribution is centered on March 3 with a variance of
twenty days.13 With this information she can tell that most NHL
players are born between December 14 and March 23. She still can’t
answer the trivia question, but she knows the major league sport in
question is likely not hockey.
 This is precisely what artificial intelligence systems do all the
time. They make educated guesses about the probability distribution
behind a given process and then proceed to discover the parameters
of that distribution by analyzing existing data. Once the parameters
of the distribution are discovered, new data can be evaluated against
the known distribution. In statistics, we have many probability
distribution functions that can be used to describe different processes.
We have the binomial distribution, the Poisson distribution, the normal
distribution, the Bernoulli distribution, and so on. Each distribution
has a different set of parameters that describes that distribution. And
different problem types are better suited to different distributions.
The Poisson distribution is good for describing counts or incidents in
a defined period. For example, if we want to predict the number of
visitors to our website over the next month considering the number of
visitors we received each of the previous twelve months, we can assume
the number of visitors each month is distributed according to the

13. This is a fictional example to illustrate how understanding the probability distribution
of some process can help us make predictions. We don’t know if the process describing
birthdays of hockey players is Gaussian, and we certainly don’t know the mean and
variance of that distribution.

140 Is tHE ALGorItHM PLottInG AGAInst us?

Poisson distribution. We can find the parameters of the distribution by
analyzing how many visitors came to our website each day of the past
year, and we can sample from that distribution to make predictions
about how many visitors we will get over the next month.
 We revisit the Bernoulli distribution later when we discuss
classification algorithms. It is used to describe the probability distri-
bution of data samples falling into one of two categories: dog vs. cat,
orange vs. apple, heart disease vs. healthy. The normal distribution,
which we have seen, is one of the most assumed distributions in
artificial intelligence. Many processes—like population height,
customer satisfaction, and birth weight—can be modeled using the
normal distribution. The exact reason why this is the case is beyond
the scope of this book but is explained by a mathematical theorem
called the central limit theorem. This theorem states that whenever a
population sample is large enough (a population sample is a subset of
the population that we use in our experiments; e.g., the one thousand
boys we surveyed are a sample of the overall population of fifteen-
year-old boys in the world), the means of different population samples
follow a normal distribution. This is powerful because it implies that
whenever we have a process that depends on the aggregate of many
subprocesses, the aggregate process can be modeled using the normal
distribution. And many things in nature are the result of the sum of
many other processes; for example, the birth weights of newborn babies
are the result of many subprocesses (the size of the parents, different
health markers from the mother, which is itself affected by different
pressures for the society in which the mother lives, etc.).
 At this point, we should understand distributions and the power of
using probability distributions to make predictions. We have developed
an understanding of how we can use statistics and probability to create
a simple model from existing data. But what if our data sets are slightly
more complicated? What if, instead of surveying only fifteen-year-
old boys, we surveyed teenage boys between the ages of thirteen and

 AnsWErInG An AGE-oLD QuEstIon 141

nineteen and wanted to build a model that could predict their height
in that age range? We could still assume a normal distribution and find
the mean height of boys in the thirteen-to-nineteen age range, but you
can intuit that the mean for that distribution will not be very useful to
predict the height of a seventeen-year-old boy or a fourteen-year-old
boy because the mean would be spread out over the entire thirteen-
to-nineteen age range. What we need in this case is a method that can
find the probability distribution of height for each age group in the
thirteen-to-nineteen age range.

LINEAR REGRESSION: THE CONCEPT

Calculating the mean height of the sample population of fifteen-year-
old boys was a good step for predicting the height of fifteen-year-old
boys outside of our survey data set because the mean is one of the
parameters of the normal distribution, and we can use it to measure
where those boys fit in that distribution. But what if our data set
consists of a range of ages, as we postulated above? In this example, we
might still be able to calculate the mean height for each age group in
the sample population and store those values to make predictions in
the future, but that would only work if our data set comprises many
samples for each age group from thirteen to nineteen. If our data set
does not have samples for ages fourteen and fifteen, how could we
calculate the mean height for these groups? In this case, our simplistic
model would fail. When we apply artificial intelligence to solve
problems in the real world, our data sets are far from perfect, and there
are population groups for which we have no information or very little
information. To solve this problem and approximate an answer for data
that might be sparsely populated, we can use linear regression.
 Linear regression is a widely used algorithm for predicting market
valuations in financial institutions. It can be used for modeling

142 Is tHE ALGorItHM PLottInG AGAInst us?

customer satisfaction in the hospitality industry or predicting the rate
of infection for a contagious disease over a population. In general, it is
a method used for finding a relationship between a dependent and an
independent variable. As we will see, linear regression is an algorithm
in its own right, and it can be used without a neural network; however,
as we saw in chapter 2, what many neural networks do to forecast
information in their last layer is a form of linear regression. Using
our house prices example, the independent variable is the number of
bedrooms of the house, and the dependent variable is the house price.
The price of the house is a dependent variable because our assumption
is that the price of the house depends on the number of bedrooms of a
house. Linear regression is performed by finding the line that best fits
the data in our data sets. The best-fit line is the line that minimizes the
distance between the points on either side of the line and the line itself
(fig. 3.5). It is a powerful device for finding relationships and making
predictions about data points where there is missing information, or
gaps in our data set. Let’s take a look at a few illustrations of scatter
plots and best-fit lines.

Independent Variable

D
ep

en
de

nt
 V

ar
ia

bl
e

D
ep

en
de

nt
 V

ar
ia

bl
e

Independent Variable Independent Variable

D
ep

en
de

nt
 V

ar
ia

bl
e

(a) (b) (c)

Figure 3.5 Three scatter plots with best-fit lines (black lines) running through
the data points (blue dots). Subplot (a) shows a positive linear relationship
between the dependent and independent variable. Subplot (b) shows a negative
linear relationship between the dependent and independent variable. Subplot (c)
shows data that does not exhibit a linear relationship between dependent and
independent variables.

 AnsWErInG An AGE-oLD QuEstIon 143

 If we look at figure 3.5, we see three different examples of scatter
plots with a best-fit line running through the data points. Scatter
plots are used to visualize the relationship between samples in a data
set. If we have a data set consisting of many samples, we can plot
the samples on a graph where the x-axis represents the independent
variables (in our house example, these would be the number of rooms
in the house), and the y-axis represents the dependent variable. Figure
3.5(a) shows a positive relationship between the independent and the
dependent variable. As the independent variable grows—that is, as
the values increase in the x direction—the values also increase in
the y direction. Subplot (b) shows a negative relationship between
the independent and dependent variables. As values increase in the
x direction, the values in the y direction decrease. From subplots (a)
and (b), we can see that the relationship between the independent
and dependent variable is approximately linear. As the values increase
or decrease in the x direction, the values in the y direction increase or
decrease by the same factor. Understanding the relationship between
the independent and dependent variables in our data set is crucial to
understanding whether we can hope to build a model to interpret
our data.
 Suppose we have three separate data sets that produce scatter
plots (a), (b), and (c). In subplots (a) and (b), we can see that the
independent and dependent variables have a linear relationship.
Remember that the dependent variable is the value we want to learn
how to model (i.e., how to predict) given the independent variable.
In these cases, we might consider using a linear regression algorithm
to find the line that best fits the data. Once we find the best-fit line,
that line becomes our model. Using this line, we can analyze data
points outside of our data set and “predict” the value on the y-axis
(i.e., the price of the house) (fig. 3.6).

144 Is tHE ALGorItHM PLottInG AGAInst us?

Independent Variable

D
ep

en
de

nt
 V

ar
ia

bl
e

Figure 3.6 How a linear regression model (i.e., a best-fit line) can predict
information for missing data in the data set. The segmented line indicates a value for
the independent variable that does not correspond to any known value in our data
set (visualized as a gap in the blue dots). The best-fit line can be used to approximate
the missing information.

 In figure 3.6, we see an example of a gap in the “knowledge” of
our data set. If we are asked to predict the value of a dependent variable
(maybe the price of a house or a person’s height) given the value of
the independent variable (the x value), we can’t use the first approach
we explored where we calculated the mean of the values in the data
set and used the mean as our prediction. As we can see, we don’t have
any samples in our data set (blue dots) where there is a y value for the
x value we are asked to predict, so we can’t calculate the average of y
values given our x value. By using linear regression to find the best-fit
line, we can use the equation of that line to find the y value for our
best-fit line at point x, and this can become our predicted value.
 Now consider subplot (c) of figure 3.5. The scatter plot in (c)
does not show an obvious relationship between the dependent and
independent variables. If there is a relationship, it is definitely not linear.
We can still use linear regression to find a best-fit line that runs through
the data. The problem is that, since there is no linear relationship in
the data to begin with, we would find the best-fit line to be a very

 AnsWErInG An AGE-oLD QuEstIon 145

poor model for making predictions about our data. Remember that the
purpose of AI algorithms is to build a model from existing data to make
predictions about data outside of our data set. If a new house comes
on the market, we want to be able to predict the price of the house
based on the number of bedrooms even though we have never seen this
house. But if the data set we used to build our model looks like subplot
(c), the predictions we would make using that model would not be
accurate enough to be useful. Even a cursory look at figure 3.6 shows
that the predicted y value from the selected x value (the purple line’s
x-intercept) would not be a good prediction. We can see that the line
does not accurately predict the existing data points in the scatter plot.
 This is why good data scientists spend a lot of time understanding
the data they are working with before running the data through a
particular algorithm to create a model. Creating a model is easy. The
trouble is in understanding whether the model we are creating is a good
model to interpret our data set. In the subplot (c) example, a linear
regression model would not be a good model to interpret that data. The
term artificial intelligence can be misleading because it suggests there is
some secret intelligence sauce inside a computer, and if we just shovel
enough data into a computer and click the Artificial Intelligence button,
the computer will sort it all out and give us the right answer. Hopefully,
we are beginning to see that, instead of hands-off intelligence, AI is a
collection of tools based on statistical assumptions and probabilities; to
ensure that our projections work and are accurate, we must understand
the data we are working with. Only then will we know whether the
assumptions we are making make sense. Throughout the rest of the
book, we will continue to see the pitfalls of failing to understand the data
before selecting our algorithms or, worse, before deploying our models.

LINEAR REGRESSION: THE ALGORITHM
At this point, we should have a good intuition for what a linear regression
algorithm does and how powerful it can be. We are now going to look

146 Is tHE ALGorItHM PLottInG AGAInst us?

at how linear regression can find the best-fit line given a data set and
how probability distributions are related to linear regression.

First, recall that the linear regression model is a best-fit line running
through the data in our data set. How can we create an algorithm, or a
systematic set of steps, that results in a best-fit line? The first step is to
choose a random line through our data set and then progressively adjust
it. You are probably thinking, “A random line, really? How do we even
choose a random line?” We can see from figure 3.7 that there are many
possible ways to draw a line. In fact, there are an infinite number of
possibilities for where we can draw a line in that graph. The answer is
that we just pick one. We randomly select any line as our initial model.

Independent Variable

D
ep

en
de

nt
 V

ar
ia

bl
e

Figure 3.7 The two black lines are simply two possibilities among infinite ways to
randomly place a line over a data set.

 So how do we go from a random line to a best-fit line? It starts
with the equation of the line. This is where all the work we have done
so far starts paying off. In high school, we learned that the equation
of a line is y = mx + b. In that equation, m is the slope of the line,
and b is the y-intercept. Using those two parameters (m and b), we
can generate any line we want, in the exact orientation we want it.
By adjusting the m parameter, we can rotate the line in any direction,

 AnsWErInG An AGE-oLD QuEstIon 147

and by adjusting the b parameter, we can move the line up and down
our coordinate system.
 To create a linear regression model, we simply need to create an
algorithm that can learn the m and b parameters of the line that best fits
the data in our data set; and to learn those parameters, we use our training
data. Before proceeding any further, there is a slight terminology tweak
that we must make. In AI literature, the parameters of a model are called
weights and biases and are typically denoted using θ. The input samples
are denoted by x, and the labels are denoted by y. So, to put it in proper
AI terminology, the equation of our line becomes = θ1x + θ0, where
is the predicted label, as in the label that our new model has predicted
for the input sample with features x. Note that is different from y, the
actual label (the “ground truth” mentioned in the last chapter).
 We begin training our algorithm by choosing random values for
θ1 and θ0. This gives us our initial random line. This line will not be
very useful, but that’s OK because we have to start somewhere. Next,
we choose a sample from our training data set, replace x in the equation
with that sample’s feature value, and calculate a value for . The value
for we have just calculated is our predicted value for this sample.
So, continuing with our house price data set, if the house in our
data set has three bedrooms, then x = 3. θ1 and θ0 are initialized to
random values, so let’s assume θ1 = 10 and θ0 = 5; then = 10(3) +
5 = 35 (for simplicity let’s assume that these are in $1,000 units, so
35 really means $35,000). Our linear model has predicted that our
three-bedroom house is worth $35,000. I don’t know where in the
world you live, but I live in Toronto, and $35,000 for a three-bedroom
house in Toronto is laughably inaccurate, which makes sense because
we chose random parameters for our line. Now comes the fun part.
Because we are training our model, and because we have a training
data set, we have a label y for this sample that serves as our ground
truth for the sample. So let’s assume this house is valued at $1,000,000;
then y = $1,000,000. The job of our training algorithm is to compare

148 Is tHE ALGorItHM PLottInG AGAInst us?

our predicted value of $35,000 with the ground truth of $1,000,000,
calculate how far our prediction was from the ground truth, and, based
on this calculation, adjust the θ1 and θ0 parameters so that next time
through our data set, the prediction will be closer to the ground truth.
This is the essence of how all AI algorithms, including neural networks,
are trained. We have already seen this in the previous chapters. We start
with random parameters for our model. We generate predictions. We
compare how far our predictions are from the ground truth, and we
adjust our parameters so that next time through the training process,
the predictions are closer to the ground truth.
 When we are training an AI algorithm to build a model, the training
process goes through the entire data set several times. Recall that in AI
literature, when the training process goes through the entire data set
once, this is called an epoch. Training AI algorithms to achieve robust
results may take hundreds of epochs. This means that the training process
presents each sample in the training data set to the model hundreds of
times before the model is fully trained. Each time a sample is presented
to the model, a prediction is made, and after comparing against the
ground truth, the loss for the sample is calculated. In previous chapters,
we saw that the loss is the difference between what the actual value is
(the ground truth, or sample label) and the predicted value. The goal
is to reach the point where the model’s predictions closely match the
ground truth. How do we know how many epochs it will take to train
our model? We will get to that soon; for now, our focus is understanding
how the model’s parameters are adjusted through training.
 Let’s assume that our data set consists of one thousand samples
(which is a very small data set to train a model, but we need to keep
it simple while we are still learning). A single training epoch involves
presenting each sample to the model one at a time. In a data set of
one thousand samples, a single training epoch consists of analyzing
one thousand samples, comparing predictions to ground truths, and
calculating the loss for each sample. We then want to use this loss as a

 AnsWErInG An AGE-oLD QuEstIon 149

guide for how to adjust the model parameters to minimize this loss in
the next epoch.14
 To calculate the loss, we use what is called a loss function (as
mentioned in chapter 2). The loss function is simply an equation that
can help us calculate the difference between the predicted value and the
ground truth in a way that can point us in the direction to adjust the
model parameters. The loss function we select depends on the problem
we are trying to solve and the model we are trying to train. Finding good
loss functions for any given type of problem is an active area of research,
and far beyond the scope of this book. For our purposes, all we need to
know is that once an AI engineer has defined the problem and chosen a
model to train (e.g., a linear regression model), there are well-known loss
functions for different classes of problems that can be used to train the
model. For linear regression algorithms, a common loss function looks
like this: . It looks complicated, but it really isn’t. We
know that y is the sample label, and x refers to the sample features. We
also know that θ refers to the model weights. The only term that we have
not seen is , and it refers to the model itself. Remember that AI
models are considered mathematical functions. The term describes
a function that processes x features, and it is parameterized by weights θ.
We use as the name of the function instead of the traditional f because
we call our model a hypothesis. This equation is simply saying: Calculate
the difference between the predicted value and the ground truth
y, and square the result. We don’t have to worry about the constant.

14. Again, I’m simplifying for ease of explanation. In practice, many neural networks use
what are called mini batches, where samples are not presented one at a time but in groups
of samples from the larger set. Instead of calculating the loss of each sample and updating
the weights based on this calculation, we divide an epoch into small batches of samples.
For example, for a data set of one thousand samples, we might create mini batches of
one hundred samples. In this case, the epoch lasts for ten mini batches, where the loss is
calculated for each sample in the mini batch, and the weights of the model are updated
based on the loss over the entire mini batch. Updating the weights based on the loss over
the mini batch instead of per sample makes the training process more likely to converge.
Updating the weights based on the loss for each sample means that noise in the data can
greatly affect the training process.

150 Is tHE ALGorItHM PLottInG AGAInst us?

It doesn’t affect the loss, or the point we are trying to make; it is simply
there to make further calculations simpler.
 You might be wondering why we even need a complicated loss
function. And why do we need to square the difference between the
predicted value and the ground truth? Why can’t we just calculate the
difference between the predicted value and the ground truth and be done
with it? (Technically, this would still be a function, although admittedly
a simple one.) The simplest answer is to say that squaring the difference
helps us deal with negative values. For example, if the predicted value is
smaller than the ground truth, the difference would result in a negative
value. Squaring the value helps us get rid of the negative. The more
accurate answer is that loss functions are carefully constructed because
they must be differentiable, and they must be formulated to maximize
the likelihood of predicting the correct outputs based on input features
belonging to the same distribution as the training data. In other words, it
helps to frame the problem we are trying to solve in terms of probabilities.
Specifically, we need to show (mathematically) that by minimizing the
loss function, we maximize the likelihood of predicting a correct output
for a given input sample. When we frame the linear regression problem in
terms of probabilities and calculate a method to maximize the likelihood
of predicting the correct outputs based on input features, we end up with

. But more on this later.
 Once we have selected a loss function, to systematically adjust the
model parameters in a way that minimizes the loss over the training
epochs, we need to use derivatives. That’s right. We can finally answer
the question that high schoolers have been asking for ages: When will I
ever need to use calculus? To adjust the model’s weights, most AI training
algorithms, including neural networks, use derivatives. We explain this
process next by trying to understand the following equation:

 AnsWErInG An AGE-oLD QuEstIon 151

 If we can control our survival instincts pushing us to flee the sight
of an equation, we will see that this is in fact a simple concept. The
first thing we need to do is identify the elements we are familiar with.
We know that θ refers to the model weights. In a neural network, these
are the weights of the connections between each neuron. In a linear
regression algorithm, θ is the slope of the line we are trying to find.15
L is the loss function. These are elements that we have already seen.
Before we get into what or means, we can deduce that the equation
is trying to show us how to calculate a new weight. In other words, in
the case of linear regression, it is telling us how to update the slope of
the line we are trying to find. The equation shows us that to calculate
the new value for the θ parameter (i.e., to calculate a new slope for our
line), all we have to do is take the current value for θ (if this is the first
iteration; remember that this is a randomly chosen value) and subtract
the derivative of the loss function with respect to the current θ value.
That is, the right side of the equation is updating the left side of the
equation. The θ value on the right of the equal sign represents the
current slope of the line, and the θ value on the left side represents the
updated value for the next training iteration. is simply the sign for
partial derivative. Let’s try to unpack why derivatives help us update
our model parameters.
 First, let’s remember what an equation is really telling us. Consider
the following equation: y = x. An equation shows us the relationship
between independent and dependent variables. If we were to plot a
graph of the value of y given any value of x for the equation y = x, we
would get the graph shown in figure 3.8. A different equation, such
as y = x2, will show a different line, in this case a parabola (fig. 3.9).

15. Note that we must perform the same calculations for each θ in a model (i.e., θ1 and θ0). To
make our explanations easier to follow, we will generally ignore the y-intercept (i.e., θ0) and
focus on the slope (i.e., θ1). Just remember that we must perform the same calculations for
every weight in a model (in a neural network, this can mean millions of θ values), and this
includes the biases.

152 Is tHE ALGorItHM PLottInG AGAInst us?

–15

–10

–5

0

5

10

15

–15 –10 –5 0 5 10 15

Figure 3.8 A plot of the line y = x.

P

Q

R

0

20

40

60

80

100

120

–15 –10 –5 0 5 10 15

Figure 3.9 A plot of the line y = x2.

Regardless of type, the line produced by an equation describes the range
of possibilities for the dependent variable (y) given any possible values
for the independent variable (x). When we are dealing with a simple
equation of a single independent variable x, our equation describes a
one-dimensional world. This is why the graph of the equation is a line.
And this is the case in simple linear regression where the data samples
are described by a single feature. It does not have to be a straight line,
but it will be a line. If the equation is slightly more complicated and
includes two independent variables, such as y = x1 + x2, then the equation
describes a surface in 3D space—remember our vectors in N-dimensional

 AnsWErInG An AGE-oLD QuEstIon 153

space from chapter 1, where we described a vector consisting of a line
originating at the origin and traveling through an N-dimensional space
where x1, x2, x3 describes how much the vector should move in each
dimension. This surface would not look like a line; it would look like a
topological surface that describes the possible values of y considering all
the possible values of the x1 and x2 dimensions.
 When dealing with AI, where our input vectors deal with
multiple dimensions (i.e., x1, x2, . . ., xn), our equations describe a
multidimensional surface of possible y values. In these cases, linear
regression is still finding a best-fit line through the data, but it’s a line
in a multidimensional surface. It’s important to understand that, while
we have been using a simple example where the data samples contain
only a single feature (the houses in the data set are only described by
one dimension, the number of bedrooms), data samples are invariably
described by multiple features (the number of bedrooms, location,
proximity to hospitals, etc.). The multiple features add extra dimensions
to the equations that AI algorithms need to solve. We are using a single
feature to simplify the explanations, but the algorithms are the same
whether we are dealing with one feature or multiple features. The math
is just easier with a single feature.
 Now let’s go back to our loss function, . This
equation is describing all the possible loss values our model can
produce for all possible input samples and all possible parameters θ.
If we close our eyes (you might have to finish reading this sentence
before closing your eyes), we can try to imagine a surface floating in
space, and this surface has some topological features like mountains,
planes, and valleys. The mountains are areas where the loss is really
high, and the valleys are areas where the loss is really low. We can
think of the valleys as describing the times (combinations of θs and
inputs) when the model makes the correct prediction (that’s why the
loss is low) and the mountains as the times when the model makes
incorrect predictions, causing the loss value to be high. Our goal in

154 Is tHE ALGorItHM PLottInG AGAInst us?

our training algorithm is to traverse this terrain in search of the valleys.
Let’s look at the equation again: . Considering that
the input features (x) and the ground truth (y) cannot be adjusted,
the only variable we can alter to ensure L remains low is θ. That is,
our goal is to adjust θ so that the loss for each sample belongs in the
valleys of the loss surface, not in the mountains. The question then
is, How do we adjust θ in a direction that moves us toward the valleys
of the loss function?
 Instead of a multidimensional surface that we can’t even picture,
let’s assume our loss function describes a line. Figure 3.10 shows what
this surface might look like. We can now assume that during our
training, when we calculate the loss L for a given sample, depending
on what the features x and the θ parameters are for that sample,
the loss will be in some place along that curve. Let’s consider what
happens during the first iteration.

Lo
ss

Loss Surface

P

Q

O

R

0

20

40

60

80

100

120

–15 –10 –5 0 5 10 15

Figure 3.10 What a loss surface for might look like if the input
data sample contains a single feature (i.e., x1).

 We randomly initialized our parameter θ, so let’s assume that
after calculating the loss for the first training epoch, our calculated
L is at point P in figure 3.10. Point P is high on the curve because
our loss is large at this point. Our goal is to find a systematic way

 AnsWErInG An AGE-oLD QuEstIon 155

such that every training step we take moves from point P closer to
point Q. Why do we want to move to point Q? Because point Q is
the lowest point in the loss surface. Instead of simply accepting what
I have just said, try to visualize what this means. The loss surface
describes all possible loss values we could encounter during training.
When the loss is high, our predictions are very far from the ground
truth. When the loss is small, our predictions are very close to the
ground truth. And the goal of training is to drive our predictions
closer to the ground truth. Another way to think about this is that
we want to traverse the loss surface from the high place where we find
ourselves to the lowest point in that surface. To do this, we (again)
use calculus.
 Remember that calculus helps us measure rates of change. Let’s go
back to our equation for adjusting the model parameters:

To solve this equation, we need to calculate the partial derivative of
the loss function with respect to parameter θ. This calculation tells
us how changes to θ affect the loss L. Another way to say this is to
say that for some loss P, we want to figure out how adjusting θ affects
the loss: Does increasing θ also increase the loss to some point higher
than P, or does it decrease it? Going back to figure 3.10, tells us
how changes in θ move P farther away or closer to Q. One way to
think of this is that is the slope (in a multidimensional surface, we
call this a gradient) of the L surface at point P. To move from P to
Q, we want to calculate the slope of the curve. The slope tells us the
direction in which we want to move. Here is why: At point P in our
graph, the slope of the curve will be negative, so will be a negative
value. Note that to calculate a new value for θ, we take the current
θ and subtract the slope of the surface. But if that slope is negative,
then θ – (– slope) becomes θ + slope. So the new θ value will be

156 Is tHE ALGorItHM PLottInG AGAInst us?

slightly larger. If we look at figure 3.10 then, increasing the value
of θ is exactly what we want to do to get to point Q. As θ increases,
the value of L decreases, and the update nudges us in the downward
direction toward point Q.
 But what if instead of finding ourselves at point P originally,
we found ourselves at point R? Then, the slope of our curve at
point R would be a positive value. To calculate a new value for θ, we
calculate θ – slope. This has the effect of decreasing the value of our
new θ. This makes sense because, going back to our curve, to get to
point Q, we want to decrease the value θ, which decreases the value
of L. In chapter 1, when we described updating the model weights as
adjusting some tuning dial, this is exactly how we turn those dials.
 This process of calculating the gradient (the slope in a
multidimensional surface) of the loss surface and moving in the
downward direction of the gradient toward a minimum loss value is
called gradient descent. The state-of-the-art method today for training
artificial intelligence models and updating the model parameters to
minimize a loss is gradient descent. In a neural network, the model is
composed of multiple layers, and each layer has many neurons with
connection weights that must be updated. The process of updating
those weights is the same as what we have just described. We must
calculate the partial derivative of the loss function with respect to
each weight to update each weight value. Since neural networks are
composed of multiple layers and we must perform this calculation for
each layer from the output layer all the way back to the first layer, we
call this process gradient descent through back propagation.
 I find gradient descent through back propagation to be one of
the most elegant solutions in computer science. To understand its
significance, it helps to remember that none of this was obvious. For
decades, neural networks seemed impractical because there wasn’t a
good method for updating the weights on large networks. Someone
had to come up with the idea of using calculus in this way and have

 AnsWErInG An AGE-oLD QuEstIon 157

the conviction to try it.16 And to think that this actually works should
give us hope and excitement for what we can achieve!
 Going back to our linear regression model, by adjusting the θ
parameter systematically so as to minimize the model’s loss, what we
are really doing is adjusting the slope of the best-fit line. Recall that
our linear regression model is simply a line with equation y = θ1x
+ θ0. When the slope of the best-fit line was randomly chosen, the
predictions were bad because the line did not accurately represent (or
fit) the trend in our data. But as we adjust the slope of the line, the
predictions become better as the line eventually locks in on the trend.

PROBABILISTIC INTERPRETATION OF LINEAR
REGRESSION

We started this chapter discussing probability distributions, and we
showed how understanding them can help us identify trends in data,
which helps make predictions about new data. We saw that if we
can assume that the data we are analyzing is distributed according
to some known probability distribution, then we can try to discover
the parameters of that distribution. Now we are going to see how
linear regression is related to Gaussian distributions by describing a
probabilistic interpretation of linear regression. We have already seen
the geometric interpretation of linear regression, and we know how
to train a linear regression model on a data set to make predictions.
Why do we need to understand the probabilistic interpretation?

16. It is difficult to pinpoint who “invented” gradient descent through back propagation
because, as is often the case, many people over decades came up with contributing ideas,
each building on previous work. Yann LeCun, currently chief AI scientist at Meta, is often
credited with creating the first practical implementation of back propagation in 1989,
while working at Bell Labs. Arthur E. Bryson and Yu-Chi Ho are credited with inventing
back propagation to train deep-learning models in 1969. But it all depends on how we
define “invented” and where in history we draw the line.

158 Is tHE ALGorItHM PLottInG AGAInst us?

 The purpose of this book is to help us understand the elegance of
artificial intelligence systems—and their limitations. The probabilistic
view helps guide our intuition for how accurate our predictions are
and how much we should trust our system. We need to remember that
the purpose of artificial intelligence is to help us build models that can
make predictions we can use to then make decisions about the future.
If we consider these AI systems magical “black boxes” with inherent
intelligence, then we are setting ourselves up for disappointment
when their predictions fall short of reality. This is what happens when
modeling systems make predictions about the weather and, instead
of sunshine, we see rain; or more recently, when modeling systems
predict a fall in COVID-19 infection rates, but instead the infection
rates increase. In these cases, most people blame the systems as useless
and reject them altogether. Once we understand how these systems
work, we see that whether the predictions prove accurate or not says
little about the system’s intelligence. Predictions are based on the
system’s ability to model a distribution. If the system was trained
using a data set that represents a good distribution of outcomes, then
the system should be able to make accurate predictions. If the system
was trained using a data set that isn’t very representative of reality,
however, then the predictions will not be very accurate.

For example, suppose we trained our linear regression model to
predict the height of fifteen-year-old boys again. But for the training
data set, we chose one thousand boys all belonging to different
basketball clubs. As we might imagine, in this case the algorithm will
be biased toward tall boys, since presumably basketball players are
very tall (or at least taller than average). If we then ask it to predict the
height of a new fifteen-year-old boy who walks in off the street, the
prediction might prove inaccurate. If, instead, our data set is chosen
from a random population of fifteen-year-old boys from the city of
Toronto, our algorithm might prove more accurate at predicting
heights of fifteen-year-old Torontonians. In both cases, it is the same

 AnsWErInG An AGE-oLD QuEstIon 159

system; in one case it succeeds, and in another it fails; and it all
depends on the training data. (So we may well ask, Where exactly is
the intelligence?) Note that while our algorithm might prove accurate
at predicting the height of random fifteen-year-old boys in Toronto,
that same trained algorithm would prove highly inaccurate in other
cities around the world. This is the problem of bias, which we discuss
more in the next chapter.
 So what does linear regression have to do with probabilities?
We discussed the method for training a linear regression model, and
it involved calculus. Where do probabilities factor in? Probabilities
factor into the loss function . We are not going to
derive the loss function because that process is quite complex and
beyond the scope of the book, but we will intuit how probabilities lie at
the heart of our training algorithm. First, let’s consider a hypothetical
data set where the data lies exactly on our predictor line. And I don’t
mean that just our training data set will lie on the line (see fig. 3.8).
I mean that we are guaranteed that all the data, including the real-
world data, will lie exactly on the line. That is, for every data sample,
y = θx. In this case, we don’t really need gradient descent, do we? All
we need to do is pick two data points and calculate the slope of the
line that runs through them. Since the data points line up perfectly
on the best-fit line, the slope of the line between any two points will
perfectly describe the line for all points.
 The reason we need gradient descent is because the data, although
it can exhibit a linear relationship, contains noise. This noise means
that the data points won’t exactly lie perfectly on our best-fit line. If
we were to pick two random data points, calculate the slope of the
line between them, and use this as our predictor, the predictor might
not be very accurate since the line running through any two points
will not necessarily result in a best-fit line (fig. 3.11). It is because of
this noise that we use gradient descent to find the best-fit line.

160 Is tHE ALGorItHM PLottInG AGAInst us?

Independent Variable

D
ep

en
de

nt
 V

ar
ia

bl
e

Figure 3.11 A line running through two random points in the data set. The black
line is clearly not a best-fit line, yet it runs through two points.

 Gradient descent explains how to update the model weights by
minimizing the loss, to improve our results. But it says very little about
why this works or why we have used a specific loss function. Suppose
we grabbed a random mathematical function and used it as our loss
function. Would that work? Most likely it would not. To develop a
loss function effectively, we typically start by expressing the problem
we are trying to solve in terms of probabilities. In our case, we want
to calculate the probability of a data sample having label y given a set
of features x, using a model with parameters θ—mathematically, we
express this as P(y|x; θ). We have already said that our data samples
contain some noise. We will call this noise ϵ and can express it more
formally as y = θx + ϵ. Note that y = θx describes a line where the data
samples lie exactly on the line, which can be thought of as y = θx + ϵ
when ϵ is 0. When ϵ is not 0, there will be some “jitter” in the data,
sprinkling the data points about the line.
 Here we assume that this noise is distributed following a normal
distribution. Recall that, according to the central limit theorem, this
is often an OK assumption to make for observations that depend on
many processes. So although we don’t know the noise for each data

 AnsWErInG An AGE-oLD QuEstIon 161

sample (i.e., we don’t know exactly how far each data sample will be
from the line), we assume that the noise follows a normal distribution.
Armed with this information, we can then discover the parameters of
that normal distribution: the distribution’s mean and its variance. The
mean and the variance of the distribution then allow us to sample from
that distribution, which is essentially what the best-fit line is doing. We
can think of the best-fit line as sampling from the distribution of noise
in our data, resulting in a line that runs as close as possible to all the
data points. If we restate the linear regression problem as calculating the
probability that for each data sample, the features x belong to label y, or
P(y|x; θ), we can start by writing the equations in terms of the normal
distribution equation. Then, we can proceed to calculate the maximum
likelihood that features x belong to each label y. This process can fill
several pages with algebra; I will spare you that and just let you know
that if we do so, we realize that to maximize the likelihood that our
features map to the correct labels, it is enough to minimize a relatively
simple equation. This equation is the loss function .
 In essence, an artificial intelligence algorithm is simply a good
probability estimator, and it uses probability theory to develop the plan
for estimating an appropriate answer to our questions. Once we have
established our plan for calculating the probability of our results being
accurate, we can use calculus and gradient descent to adjust the model
weights so that we can correctly follow our plan. This is important to
understand if we want to stop thinking of artificial intelligence systems as
some metaphysical entities that, for all we know, “might be planning to
enslave us.” Understanding the inner workings of these algorithms reveals
that the foundation of AI is probability—and, therefore, also uncertainty.
This means that while we can rely on AI systems to help accelerate much of
the work we do, we must first understand their strengths and weaknesses
before we can accurately estimate the benefits they represent. Even when
they function well, it only means that, based on their training data, there
is a high probability that their answer is correct.

162 Is tHE ALGorItHM PLottInG AGAInst us?

LOGISTIC REGRESSION

In the previous section, we learned that linear regression is used to
forecast values by finding trends in a data set. It constitutes one of
the main pillars of artificial intelligence, and it is the predictive basis
for many neural network architectures. The other pillar of artificial
intelligence is logistic regression. Logistic regression—a classification
algorithm—has been around for a long time. One of the most popular
tasks for AI algorithms is to classify items into different categories.
Logistic regression lets us classify items into two categories. We might
have a data set containing patient information: age, blood pressure,
blood sugar levels, smoking habits, drinking habits, family history of
heart disease, and many other possible indicators of heart disease. Our
task in this case might be to classify the patients in the data set as likely
to suffer from heart disease or not. Another example where logistic
regression might be used is in the hospitality industry. Suppose the
owner of a resort wants to identify the guests that are most likely to
return to the resort based on some data about the guest: length of stay
at the resort, amenities visited, money spent in the resort, age, and
so on. Using this information, the resort might want to tailor their
services to ensuring that those guests indeed return, or they might want
to reach out to the guests that the algorithm predicts are unlikely to
return, to see if they can change their guests’ minds.
 In computer vision, logistic regression or softmax regression (a
generalized form of logistic regression with multiple categories, as
first mentioned in chapter 1) is used to classify images into different
categories: cats, dogs, cars, trees, and so forth. In the last layers of
almost all classification neural networks, there is either logistic or
softmax regression. We do not need a neural network to perform
logistic regression. We can use logistic regression directly on a data set.
Neural networks are used to reduce the size of the input vector into
something that is more manageable for logistic regression to handle.

 AnsWErInG An AGE-oLD QuEstIon 163

Recall from figure 3.1 (way back at the opening of the chapter) that
the reduced form of the input is what we call the latent vector. In rare
cases where the nature of the data is simple, and the samples are not
described by many features so that the input vectors are small, we can
skip the neural network and perform logistic regression directly.
 Similar to linear regression, with logistic regression our task is
to find a line. In this case, however, instead of finding a best-fit line
through the data, our task is to find a line that separates our data set
into two categories: 0 and 1 (or cats vs. dogs, or blue vs. orange) (fig.
3.12). The line serves as a classification model because when we get a
new data point, we can predict its category based on which side of the
line it falls on. To train a logistic regression model, we need a training
data set with labeled samples similar to what we did in the linear
regression case. A data set that is used for classification has categorical
labels, whereas linear regression uses numerical labels. Numerical labels
represent quantitative values that a model needs to predict (e.g., the
price of a house). Categorical labels represent categories that a model
needs to predict, for example, 0 or 1 to denote if a patient has heart
disease or not, or 0, 1, 2, 3 for cars, cats, dogs, trees.

x1

x2

Figure 3.12 A logistic regression model separating two classes of samples (blue dots
and orange dots) into different categories. In this figure, x1 and x2 are simply the two
features describing our 2D data.

164 Is tHE ALGorItHM PLottInG AGAInst us?

 At this stage of our discussion, we will stick to binary classification
problems as it makes the conversation easier, but multiclass
classification follows the same concept. When we were working with
linear regression, our goal was to find a line that best fit the data,
and the line itself became the model. To find the line, we started
with the equation of a line, y = θ0 + θ1x, and our training process
involved discovering our θs. Once we discovered the values of our
θs, to predict some numerical value for a new x, all we had to do was
plug x into the equation and solve for y. Simple.

With logistic regression, the concept is similar, but the equation
is different. Remember that logistic regression is used for binary
classification, where an output of 0 corresponds to class A and an
output of 1 corresponds to class B, so the predictions of the model
must be between 0 and 1 for any value of x. What we need, then, is an
equation that can output a value between 0 and 1 for any given input.
For this we use an equation called the logistic function: y = . The
logistic regression algorithm gets its name from this function. The
advantage of the logistic function is that it produces values between
0 and 1 for any values of x (fig. 3.13). To understand the concepts of
classification, we don’t have to dig too deeply into this equation. The
equation is there simply to help us turn input values (these are the x
values in the exponent of e) into a range of 0 to 1 output values. The e
value, also known as Euler’s number, is a mathematical constant that
can be used to express the natural exponential function f(x) = ex. If
you are interested, googling Euler’s number and learning about the
natural logarithm can be a thrilling experience, but for our purposes,
we can leave it at that.
 For logistic regression, our goal is still to find the parameters of the
model—the θs. We want to find θs such that our predictions for y are
close to 0 for inputs whose labels are 0 and close to 1 for inputs whose
labels are 1. If we think of our goal as still finding a line, in this case our
line won’t be a best-fit line. The points along this line are not the model’s

 AnsWErInG An AGE-oLD QuEstIon 165

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

–6 –4 –2 0 2 4 6

y

X

Figure 3.13 Possible values of y ranging between 0 and 1 for any input x for the
logistic function, .

predictions, as in the case of linear regression. Instead, with logistic
regression, the line represents the decision boundary that best separates
the two classes. For example, consider a data set of images of cats and
dogs. If we can interpret each image as a vector in some space (images are
made up of pixels, and each pixel has a value, so we could consider the
pixel array of an image as a vector in some multidimensional hyperspace),
and if we were to plot the images of cats and dogs in a graph, we would
see that the images of cats are somewhat bunched close together, and the
images of dogs are also bunched close together, and for the most part, the
two groups are far away from each other. This might sound familiar as we
have discussed vectors as lines traveling through space in some direction,
where vectors pointing in a similar direction describe similar data. At
some point in this space between the two groups runs an invisible line
that separates the two groups. The farther away you go from the line in
one direction, the more doglike the images look; the farther away you go
from the line in the opposite direction, the more catlike the images look.
This is the line we are trying to find with logistic regression. We are trying
to find the line that best separates a group of samples into two groups.

166 Is tHE ALGorItHM PLottInG AGAInst us?

 Initially, before we begin training the algorithm, our θs are randomly
initialized. We can expect this to produce a line that will be randomly
placed in our sample hyperspace, and therefore it won’t be classifying
our data very well at all. The training process is like the linear regression
process. We use a loss function, and the loss function tells us how far our
predictions are from the ground truth label for that sample. Remember
that our training data set consists of data samples and labels. So we
would typically have thousands of images of cats labeled 1 and thousands
of images of dogs labeled 0. Early in the training process, when our θ
values are not well adjusted, the predictions for a cat image might be a
value that’s closer to 0, maybe 0.27. The loss function helps us calculate
how far 0.27 is from the desired label, 1. As we discussed in the linear
regression section, choosing the right loss function for a problem is the
most important step in the learning process. Typically, the loss function
is related to a certain probability distribution we want to model. The loss
function for the logistic regression algorithm is called the logistic loss, or,
sometimes, the binary cross entropy loss, and it is written as follows:

Again, there is no reason to panic. The equation is, in fact, quite simple.
We do not have to understand all of it. Here is all we need to know: y is
the ground truth label for a sample, and is the model’s prediction
for a sample with features x. Recall that we already discussed this when
interpreting the regression loss; is simply what we call our model.
It is basically our hypothesis for what the input features map to. We
don’t have to look too deeply into the mathematics behind that equation;
all we need to do is understand the intuition. The only element in the
function we might not have seen yet is the logarithmic function log(),
and thankfully calculators have a button for this—whew!

 AnsWErInG An AGE-oLD QuEstIon 167

 Let’s see with an example how this function might be used. Suppose
we have an image of a cat with a ground truth label y = 1. What happens
if the model predicts 1? In this case, y = 1, and .

If our model predicts 1, then our calculated loss becomes 0. This makes
sense because a prediction of 1 matches the ground truth label in our
example, so we would want the loss to be 0. A loss of 0 means that in
this training iteration, we do not have to adjust our model parameters.
After all, our prediction was exactly right, so why would we want to
adjust our weights? But what would happen if the model predicted 0
instead of 1? In this case y = 1, and .

If our model predicted a 0, our loss would be 4.17 In this case, our loss
is higher than 0. This also makes sense because the model predicted 0
where the ground truth was 1, so we want our loss to signify that our
model has made a mistake and requires correction. How do we adjust
our model? Similar to how we responded to a like situation in linear
regression, we use the gradient descent algorithm to find the values of θ
that produce the smallest loss for the entire data set. As a reminder, the θ
parameters are updated for each training iteration as follows:

The new value of θ is equal to the current value of θ minus the gradient
(or rate of change of the loss with respect to θ) times a learning rate
parameter. Again, to explain this more simply, we use calculus to find

17. Mathematically, log(0) is undefined, so if our model predicts a value of 0, our
training algorithm must add a small quantity to keep the value close to 0, just not 0.
Therefore, is set to 0.0001 in our example.

168 Is tHE ALGorItHM PLottInG AGAInst us?

the rate of change of the loss with respect to the current value of θ. This
means finding out how much the loss changes if we change θ a little bit.
The rate of change tells us whether increasing θ increases or decreases
the loss. We want to change θ in the direction that decreases the loss, as
this leads to accurate predictions.
 In the linear regression example, we saw α in the gradient descent
equation and deferred on its explanation, as we wanted to focus on
describing the most important aspects of the algorithm. Here we see
it again. The parameter α is what we call the learning rate parameter.
It is a tunable parameter that specifies how much we should change θ
in the direction that minimizes the loss. Finding the right value for α
is very important. If α is too large, as we are traversing our loss surface
(recall our thought experiment where we imagined the loss surface as
some topological terrain with mountains and valleys), we might take
too large of a step. A very large step might be akin to jumping from
one mountain peak to another. These jumps risk our overshooting
the valleys (the loss minima), so we end up in another part of the loss
surface where the loss is large. Large jumps can lead to algorithms
that never learn (or never converge). Conversely, we do not want our
descent into the valleys to be too timid. If the steps we take in our
descent are too small, it may take too long to converge on the loss
minima. Imagine walking down a mountain by taking baby steps.
Unfortunately, finding the right learning rate value can be more of an
art than a science. It is called a tunable parameter, or hyperparameter,
because we must choose the value ourselves. The training algorithm
does not attempt to find it. In practice, we run multiple experiments
or training cycles using different learning rate values. By running
multiple experiments, we can find the right step size that gets us to
convergence in a practical amount of time.
 Let’s do a quick recap on logistic regression. Logistic regression
is a classification algorithm that helps us find a line that divides
a group of data samples into two classes: the class to the right of

 AnsWErInG An AGE-oLD QuEstIon 169

the line and the class to the left of the line. To train the algorithm,
we minimize the following loss function using gradient descent,

. Once the algorithm is trained,
to classify a data sample, we ask the following question: . We
present the logistic equation with our sample’s features x and the
learned parameters θ and calculate our output. If the result is close to
1, our prediction is class 1. If the result is close to 0, our prediction is
class 0. It is that simple! But why does it work?
 When we discussed linear regression, we described the probabilistic
interpretation of the learning process and explained that, in essence,
minimizing the loss function was akin to maximizing the likelihood
that the sample features mapped to the result we wanted the model
to predict. And this was made possible by relating the loss function
to a probability distribution, because probability distributions help
us calculate the probability of making certain observations. So, if you
have a problem and you don’t know the solution to that problem but
you can calculate the probability that a solution is correct, you might
not have the final solution yet, but at least you have a path forward. In
fact, you have more than that. You have the ability to measure success
in each step that you take toward a working solution. This is the power
of probability distributions!
 In the linear regression case, we chose the normal distribution
because we assumed that the noise scattering the data samples about our
predictor line was distributed according to the normal distribution. We
said that we can think of minimizing the loss function as being similar
to discovering the parameters of the normal distribution describing
our data, and once we learned those parameters, we could sample from
that distribution to guide our best-fit line. It turns out that for logistic
regression, the problem we must solve is very similar to our problem in
linear regression. We also have a loss function, and we must minimize
the loss function to update the model parameters following the same
gradient descent algorithm. So what is the difference between linear

170 Is tHE ALGorItHM PLottInG AGAInst us?

regression and logistic regression? If the training process for both is the
same gradient descent algorithm, how come in one case we get a best-
fit line and in the other case we get a line separator? The difference, of
course, is the loss function.
 The logistic loss is different from the linear regression loss. This
is because logistic regression is modeling a different probability
distribution than linear regression. For logistic regression, the
probability distribution we are trying to model is the Bernoulli
distribution. The Bernoulli distribution describes situations where we
are performing a single trial (e.g., tossing a coin or predicting a cat or
a dog) and the trial can result in one of two possible outcomes: success
or failure. The Bernoulli distribution helps us predict the likelihood of
either of those outcomes occurring. Let’s see how our loss function for
logistic regression relates to the Bernoulli distribution.

PROBABILISTIC INTERPRETATION OF LOGISTIC
REGRESSION

First, we will try to develop an intuition for how this sort of distribution
can be described. Since we are discussing cases that can only have one
of two possible outcomes—success or failure—we can describe the
probabilities as follows. Let’s say that the probability of success for a
given experiment equals some probability p. The probability of failure,
then, must be 1 minus the probability of success. More formally this can
be described as P(success) = p, and P(failure) = 1 – p. As an example, we
can consider what happens when we are tossing a fair coin. First, we can
assign success to flipping heads in a single trial and failure to flipping
tails. The probability of the coin landing heads would be 50 percent,
so P(success) = 0.5. The probability of failure, then, is P(failure) = 1 –
0.5 = 0.5. This makes sense because tossing a coin results in 50 percent
probability for both heads and tails.

 AnsWErInG An AGE-oLD QuEstIon 171

Note that the probability of an event occurring does not have to
be 50 percent. Here is an example where the probabilities of success
or failure are not equal. Suppose we are describing the chances of
a particular Toronto-bound train being delayed. We know from
experience that the train is punctual 95 percent of the time. We can
describe the probability of the train being on time as P(success) = 0.95
and the probability of a delay as P(failure) = 1 – 0.95 = 0.05.
 To make our lives easier, we can also combine the P(success)
and P(failure) expressions into a single equation: P(x) = px(1 – p)1 – x.
Let’s use this equation on our train example to show that it is truly
combining both P(success) and P(failure). We can define x = 1 as
success and x = 0 as failure. We can say that the probability of the
train being on time (i.e., success) is P(1) = p1(1 – p)1 – 1. Any number
elevated to the power of 0 is 1, so P(1) = p1(1 – p)0 = p. This is exactly
P(success) = p, which is 95 percent probability of our train being
on time. Now let’s check on the failure case. P(0) = p0(1 – p)1 – 0 =
1 – p. This is exactly P(failure) = 1 – p, which is 1 – 0.95 = 5 percent
probability of the train being delayed. We have shown that P(x) =
px(1 – p)1 – x combines the probabilities of success and failure for a
Bernoulli event.
 You can now also start to see some similarities between P(x) = px(1
– p)1 – x and our loss function . We
are getting closer to explaining where our loss function comes from.
If you can already see that the loss function is a restatement of the p
elements in the Bernoulli equation in terms of our model and data
labels, then you are done. You should now understand the origins of
the logistic regression loss function. If you don’t see it yet, don’t worry.
We will explain it next. Let’s see one more example.
 Suppose there is a place somewhere on earth where it rains once a
month, and every day has an equal chance of rain. If we pick any day
of the month, the probability that it will rain on that day is 1/30, that
is, P = 1/30. Since we are trying to predict rain, let’s call success 1 and

172 Is tHE ALGorItHM PLottInG AGAInst us?

failure 0 so that P(1) = 1/30. The probability that it won’t rain on that
same day is P(0) = 1 – 1/30.
 Now suppose that we are not lucky enough to know the probability
that it will rain on any given day of the month. In other words, no one
has told us that the probability is 1/30. Instead, we are given a data
set containing the days that it rained in every month for the last ten
years, and we are asked to create a model that can predict whether it’s
going to rain next Thursday. What we want is to build a model that can
learn that probability on its own. In this case, we can treat the data as
being distributed following the Bernoulli distribution. We can do this
because the Bernoulli distribution describes events that only have one
of two outcomes, and for each day, it either rained or it didn’t. We can
then build a model that tries to find the parameters that describe the
Bernoulli distribution for this data set. And once we do that, we can
predict the likelihood that it will rain next Thursday. So how do we go
about doing this?
 We start with the Bernoulli equation P(x) = px(1 – p)1 – x. Remember
that we don’t know the probability of when it will rain; all we have
is a data set. We can rewrite the Bernoulli equation in terms of our
model and training process. P(x) really means the probability that for
some sample x, the model predicts the correct label y. So P(x) is P(y|x;
θ). Recall that we can interpret this statement as the probability that
sample x maps to label y in a model with parameters θ. The right side
of the Bernoulli equation can also be rewritten in terms of our model.
We know p is simply the probability of some event happening, which
in terms of our model refers to the model predictions. Therefore P(x) =
px(1 – p)1 – x can be rewritten P(y|x; θ) = y(1 –)1 – y. These are
all terms we should be quite familiar with by this time. Now we need
to train our model to maximize the likelihood that our predictions

 produce the correct output for all samples x. If we devote the next
three pages to algebra and develop all the necessary steps—I will spare
you—we can show that maximizing the likelihood of our predictions

 AnsWErInG An AGE-oLD QuEstIon 173

being accurate is the same as minimizing the output of the following
equation: . Interestingly, this just
happens to be our loss function.
 What have we achieved in this process? We have learned that
whether we are performing linear regression or logistic regression, the
training process of an AI model is very similar. All that changes is the
loss function. The loss function is typically related to a probability
distribution, and probability distributions are the secret sauce of
artificial intelligence. There is nothing else that drives an AI model’s
predictions. There is no metaphysical “intelligence.” There are no
premonitions or revelations. When we lift the veil and peek into every
single operation that is happening inside our AI models, all we see
is math. The reason these models have any right to work at all is not
because of luck or because, by some dark magic, a mess of calculations
suddenly learns to recognize patterns. The reason they work is because
the models learn the probability that each sample belongs to each of the
output categories. And the models can learn those probabilities because
of what mathematicians and statisticians have done over centuries to
describe probability distributions.

Probability distributions are great at describing events in the world,
and it turns out that many events that appear quite distinct can still be
described by the same probability distribution; all that changes are the
values of the parameters for the distribution. For example, we can use
the normal distribution to model population height, but we can also
use it to model the birth weight of newborn babies. The parameters
of the distribution—the mean and variance—will be different for
the height and the birth weight distributions; the parameters of the
distribution will also be different for each country. But knowing that
we can use the normal distribution to model those processes means
that once we learn the mean and variance for the distribution, we don’t
need to know exactly the birth weight of every baby in a given country;
we can approximate it. If I find anything truly inspiring and ingenious

174 Is tHE ALGorItHM PLottInG AGAInst us?

about AI, it is the realization that we can use these world models that
are probability distributions as the predictive engines for mathematical
approximation functions. We call these mathematical approximation
functions AI models.

We now find ourselves at the end of a math-intensive chapter. Thank you
for reading thus far. My goal with this book has been to describe how our
most successful artificial intelligence algorithms work. The mathematics
behind these models can seem daunting at first, but I hope to have
shown that, once we understand the intuition behind the calculations,
understanding how and why these systems work is not so difficult.
In this chapter, we described in detail the functional aspects of neural
networks—the bit that makes them work. In the previous chapters,
we described neural networks as funnels that compress information
from the input layer into a latent vector representation. This latent
vector representation is a compression of the input. In other words, it
is a distilled version of the input, where the neural network has learned
to discard bits of information that are unnecessary. This latent vector
representation is used in the last layer of the neural network to perform
either classification or some form of linear regression. In this chapter, we
also described how linear regression and logistic regression—the most
common form of classification—work. We showed that if the data we are
trying to analyze is simple and the dimensionality of the feature vectors is
low enough (i.e., if each data sample is described by a handful of features),
we can use linear or logistic regression directly without requiring a neural
network. We use neural networks when the dimensionality of our data
sample is so large, with so many features describing the data samples,
that we require some form of compression first.
 You should now have a good foundation for understanding the
intuition behind most state-of-the-art artificial intelligence algorithms.
Is it a technical understanding that enables you to go off and do

 AnsWErInG An AGE-oLD QuEstIon 175

research or write your own AI algorithms? No, but if that’s your goal,
then the last three chapters should have illuminated the path ahead and
shown the direction to follow to expand on your technical knowledge.
Now you know what gradient descent means and what probability
distributions and loss functions are. You can continue to dive into
these topics and become an engineer or scientist if you so wish. If that’s
not your goal, however, if your goal is simply to understand how neural
networks function so that you can have an intelligent conversation and
formulate your own opinions about the ethics of AI, then the last three
chapters should have given you the tools to do exactly that.

In chapter 1, we learned about the history of the neural network
and its basic architecture. In chapter 2, we learned about computer
vision and a popular architecture called the CNN, which is great for
image processing. We learned that we can combine a CNN with a
fully connected network—the architecture from chapter 1—and
build good image-classification algorithms that power many of today’s
computer-vision solutions. In this chapter, we learned what makes
all that possible: probability distributions, calculus, and optimization
through gradient descent. Now we know what neural networks are:
mathematical approximation functions. And we know what they are
not: semiconscious creatures salivating at the chance to break loose
from virtual shackles. In the next chapter, we discuss what we can
do with AI and, now that we know how it works, what our ethical
responsibilities are.

Is there anything to fear about AI, or is it all fair game?

I s the algorithm plotting against us? That’s the question that
started it all.

 As early as in the introduction, we revealed that our current
neural networks are not conscious systems, and whether they are truly
intelligent depends greatly on our definition of intelligence. Over the
past three chapters, we learned how neural networks operate. Now we
understand the structures and calculations that enable them to function
in surprising and remarkable—but not magical or sentient—ways. So,
are Alexa and Siri conspiring to take over Earth? Maybe. But if they
are, it’s not personal. It’s just gradients. From this perspective, even if
you consider AI systems the bogeyman, at least now you know which
bogeyman to fight.
 We have arrived at the point where we need to evaluate what we have
accomplished and consider how, in each of our individual capacities, we
might best apply what we have learned. This is not a technical book. The
purpose of the book has not been to teach engineers how to implement
neural networks. The purpose of the book is to give everyone interested
in recent developments in AI (and now we know the extent to which any
of this is recent) an understanding of how these systems work.

The burden of knowledge is twofold. First, we must devote
considerable time and energy to digest a new concept. We need to
build new conceptual visualizations and analogies to internalize the

4

INTELLIGENT
DISCOURSE

 IntELLIGEnt DIsCoursE 177

information we receive so that it is easily accessible and applicable
to our own lives. Think about anything that you have learned and
have been able to retain and recall at opportune times. The process
of learning those things was more complex than simply having to
memorize a string of facts. You had to invest significant resources to
create mental images and models to relate with the problems and the
situations, and you had to imagine a path from the problems to the
solutions. This energy was well invested because knowledge empowers
us to change the quality of our lives. Think about how far we have
come since the first dark cave was suddenly illuminated by a controlled
fire. But knowledge also makes us responsible not only for any action
we take in the exploitation of our newfound power but also for our
lackadaisical attitude toward reigning in unintended consequences.
 Burning fuel literally ignited the Industrial Revolution. It
empowered us to build bigger and more powerful machines that,
arguably, improved our lives. But we now know the consequences of
burning fuel, for the planet and for ourselves. It is up to us to decide
what we do with that knowledge. We can use our voice to influence
policy, or we can close our eyes and pretend all is well. Either way, once
you know, absolution is forfeited.
 Artificial intelligence, and the current algorithmic revolution,
is in principle no different from any of the previous technological
revolutions our species has endured. It is argued that the first
technological revolution, the agricultural revolution, gave us a certain
level of security (food security) at the expense of freedom. When we
were simple hunter-gatherers, we were able to roam the land freely,
moving to a different place with each season or according to whatever
needs arose. The agricultural revolution and the domestication of wheat
led to farming. But farming meant that we could no longer move as
freely about the land as we once did. The new crops were feeble and
needy, requiring our constant attention. We were now bound to a small
piece of land for the rest of our lives.

178 Is tHE ALGorItHM PLottInG AGAInst us?

 Each new advancement and each piece of technology that we
create will always have positives and negatives, and artificial intelligence
is no different. It is difficult to balance the books on transformational
revolutions to know whether the net effect was good or bad. The
agricultural revolution forced groups of people to work together, which
created close communities. Large groups of people living together in
proximity led to a decrease in hygiene and the rise of new diseases. For
a very long period, our life expectancy shortened compared to when we
were hunter-gatherers. It was not until the advent of modern medicine,
antibiotics, and vaccines that things began to improve. But although
living in communities had its downsides, it also led to an increase in
communication. We had more people working together to solve
problems. Working together and growing our communities into towns
and cities forced us to create new technologies and made us the most
powerful species in the history of the planet. Was it worth it? Well, we
are the most powerful specifies to ever walk this planet, but it is also very
possible that we will be the shortest-lived species in the history of the
planet. It is difficult to calculate the worth of the trade-off. Those lucky
enough to have lived in prosperous periods for our species might say that
it was worth it, but the generations living in the dusk of our civilization
and those who will miss out altogether might have a different view.
 I don’t know whether we are truly incapable of containing the
technologies we create or whether our desire to explore all aspects of
technology—the good and the bad—is just too great for us to control.
For example, once the power of the atom was understood, was the
nuclear bomb inevitable? Could we have used nuclear power simply as
a source of clean (cleaner?) energy? Or were we immediately cursed with
the need to create an exit button (for a generations-long, species-wide
existential crisis) and send ourselves straight to the halls of extinction?
Clearly a choice existed where we did not have to invent a nuclear
bomb, but as a species, it seems that we are not mature enough to have
made that choice.

 IntELLIGEnt DIsCoursE 179

 I think we now find ourselves at a similar point in history. We live
in the Age of Data. We generate more data every second today than our
species generated (or at least recorded) in our entire history. We have
unlocked new powers with the discovery of new technologies (e.g.,
artificial neural networks and the use of GPUs and their massively
parallel computing engines) and the implementation of tools that help
us make sense of the massive volumes of data we are generating. The
danger is in blinding ourselves to the limitations of our newfound
powers and automating large parts of our lives using technologies
we don’t completely understand while completely disregarding the
limitations of those same technologies.

I began this section by saying that artificial intelligence is no
different from any other technological revolution we have ignited. But
that’s not quite true. In some ways, it is very different. With every other
technological revolution, we have made both good and bad choices. But
throughout, the choices have been ours. This time, we are potentially
looking at a different set of problems. We can accept the wide adoption
of AI-driven automation in every corner of our lives, and that will be
our choice, but that’s the only choice we get to make. Once adopted,
the choices that will shape our future will not be our own.

THE CURSE OF INTELLIGENCE

In the first part of the book, we were gathering tools. Just as the early
humans sat at the mouth of a cave shaping a piece of obsidian or flint
to make a knife, so were we forming our understanding of artificial
intelligence to make a set of tools that will help us establish a conversation.
It would be impossible to discuss artificial intelligence and develop
an opinion on its benefits and dangers, as well as our responsibility
toward it, without first defining what artificial intelligence is. In this
book, we have centered our discussions of artificial intelligence on the

180 Is tHE ALGorItHM PLottInG AGAInst us?

neural network. Neural networks are not the only algorithms capable
of making sense of data, but in many areas of research, they certainly
represent the current state of the art.
 Neural networks also possess a mystical aura just because they sound
biological. It’s hard to say “neural network” (even if we say “artificial
neural network”) and not conjure up an image of a thinking brain.
If we want to consider artificial intelligence and evaluate its potential
impact, we need to define what we mean by artificial intelligence.
The term artificial intelligence suffers from the same misconceptions
as the term artificial neural network. The problem is that the words
neural and intelligence are overloaded with meaning. We know what
intelligence means. A person who is said to be intelligent possesses a
wealth of knowledge and can apply that knowledge to solve complex
problems. But even this is a narrow definition of what we think of
when we think of intelligence. When we think of intelligence, we also
think of awareness and experience. Most of the time when we consider
intelligence, our definition is broader than simply “having knowledge
and applying it.” Instead, intelligence as a general concept combines
both being aware of the implications of the problem we are trying to
solve and being able to draw from experience and apply knowledge
in a completely new way—in other words, a crucial aspect of human
intelligence is our species’ ability to innovate.
 Consider a child and his babysitter playing at the beach. The child
digs a hole in the sand and wants to fill it with water. He realizes that
he needs a bucket to bring water from the sea’s edge to the hole. He
asks his sitter to bring him the bucket from the bag of beach toys. She
goes to look for the bucket and realizes they left it at home. She sees a
tantrum on the horizon and feels a stab of frustration at the realization
that the beach day is about to be ruined. How could they have left such
an important piece of equipment behind! Then she notices the small
plastic container his mother used to pack them a snack. It’s a square
container, but it’s deep enough to hold a good amount of water. She

 IntELLIGEnt DIsCoursE 181

empties the snacks into her purse, and suddenly the crisis is averted.
They might have left their bucket behind, but she found a workable
solution, and the water hole is filled in no time.
 Let’s analyze this situation and see if we can learn something from
it. The child knew that to carry water from one place to another, he
could use a special tool called a bucket. Let’s replace the child with
a robot. If we ask a robot to get us a bucket to fill a hole with water,
and if the robot can identify a bucket among a pile of toys and bring
us the bucket, we might think of that as intelligence. The robot could
understand our instructions: “Get a bucket.” It could identify an object;
that is, it could apply its knowledge of what a bucket is to identify it
among a group of toys. But what about the babysitter who couldn’t
find the bucket and used a storage container instead? The process of
identifying the container as a bucket replacement required awareness
of the problem. In this case, the sitter was able to abstract from the
literal definition of the bucket and consider its purpose. Ultimately,
she didn’t need a bucket. She needed a method to get water from the
sea to the hole. Once she made this realization, she was free to explore
beyond the bucket. She drew from past experiences moving water
around. She knew that other containers can also be filled with water.
A cup can be filled with water. A bottle can be filled with water. And a
storage container can be filled with water!
 Can our robot do this? The robot we have described, which is only
capable of understanding our command at a very literal level and has a
vision algorithm that lets it identify the object we requested among a
group of objects, would not be able to find a bucket replacement. It can
identify a bucket and retrieve it, but it is not capable of innovating when
the bucket is missing. To be fair, this is a simple example, and there are
more sophisticated algorithms we can use that have a good chance of
helping a robot come up with a bucket replacement to haul water. But
the point I am trying to make is that there is a difference between the
narrow definition of intelligence, where information is applied directly

182 Is tHE ALGorItHM PLottInG AGAInst us?

to problems, and the broad definition we often use when discussing a
general intelligence that’s based on awareness and experience and that
involves a healthy amount of creativity. This is the curse of the term
intelligence when applied to the field of AI. To the uninitiated, the word
immediately conjures up and attributes vast powers to artificial systems.
But as we have seen, there is still a large gap between human-level
intelligence and our best efforts at artificial intelligence.

APPROXIMATING A GENERAL INTELLIGENCE

There is a class of algorithms we haven’t discussed, and in their
functioning, these reinforcement learning algorithms come close to
innovation. Some researchers believe they may be the best path we have
to an artificial general intelligence. It’s useful to discuss reinforcement
learning briefly because such algorithms have generated the most media
attention in recent years by enabling a machine to beat human players
at the games of chess and go. But we can see that even these systems
are still too constrained to match human-level intelligence or anything
resembling consciousness, though they have demonstrated that our
species will never again dominate chess.
 Reinforcement learning (RL) algorithms are quite different from
the artificial intelligence algorithms we have examined thus far, which
are known as supervised learning algorithms. As we saw in the previous
chapters, these algorithms begin their training with a data set that has
been fully labeled by a human. These algorithms learn to map the sample
inputs and their labels. In RL, there is no data set, and there are no labels.
In the RL framework, there is an agent, and there is an environment where
the agent interacts. For our purposes, the agent is the learning entity.
The agent makes a change to the environment and evaluates its new
position in the environment. The learning process encourages the agent
to maximize a specific reward. For example, consider an RL framework

 IntELLIGEnt DIsCoursE 183

built around the game Tetris. In this example, the agent is the player, and
the environment is the Tetris playing field.
 We want the agent to learn to play the game Tetris. The agent can
change the environment by providing a set of inputs to the game: move
the incoming piece left, move the piece right, change its orientation.
What’s impressive about reinforcement learning is that it requires no
interactions or explanations from a human. The agent initially doesn’t
know anything about Tetris and doesn’t even know how to win or lose
the game. The agent simply knows that there are three types of moves
it can make for every new piece that shows up: left, right, and change
orientation. The only measure of success the agent has is a reward
system. In this case, the reward is maximizing the game score. The
agent proceeds to play the game by making moves and monitoring how
its moves are affecting the score. Moves that increase the score receive
a positive reward, and moves that worsen the agent’s position—for
example, by filling up the field and losing the game—receive a negative
reward. After several hundred (or thousand) rounds of play, the agent
learns strategies for keeping the rows of bricks low and pushing the
score higher. It has successfully learned to play Tetris.
 If this sounds like an ingenious learning mechanism, it certainly
is. But it is easy to oversell its implications and current potential for a
general intelligence. The truth is that reinforcement learning is one of
the most complex classes of artificial intelligence algorithms we have.
There is a high degree of freedom in framing the problem in a way that
maximizing a reward can lead to successful solutions. For example,
consider that some good moves are only good in retrospect. In other
words, sometimes a great move does not immediately increase the score,
but it does set up the playing field in such a way that five moves later
it will contribute to a hefty score increase. Considering how to frame
the problem of Tetris (or the environment in general) in a reward-based
mechanism where the agent’s position can be evaluated at every step is
where reinforcement learning becomes very difficult to master. And it

184 Is tHE ALGorItHM PLottInG AGAInst us?

is one of the main reasons why it isn’t yet the state-of-the-art solution
for all artificial intelligence problems.
 It is difficult to know whether RL will eventually get there or
whether another algorithm will surface that can adapt to the environment
and learn without interactions from humans, all while being a less
cumbersome framework to deal with. RL has, however, provided really
surprising solutions to questions that at one point were considered
impossible for an AI system to solve. In 2017, DeepMind (a subsidiary
of Google) made headlines when its AlphaGo algorithm beat Ke Jie at
a game of go. Ke Jie was, at the time, the number one ranked player in
the world, and go was considered the most difficult game to conquer
by an artificial intelligence, with many more possible combinations of
moves than even chess. The next version of the algorithm, AlphaZero, is
currently considered the top player in the world for both go and chess,
and many believe that at this point no human could ever beat it.
 Advancements like these in AI research are impressive and
contribute a building block to the process of one day developing a
general artificial intelligence, but they also give the public a false sense
of progress. Chess, being a difficult game for most people to master,
has a special place in our minds as a gatekeeper for intelligence. If you
can play chess well, you are automatically considered “smart.” When
AlphaZero is discussed in the media, it is presented as more intelligent
than a human (because it is a remarkable algorithm that can beat the
best human players at both chess and go) and maybe weeks away from
formulating a plan for world domination.
 When we compare Tetris to chess, the difference in complexity
between the two games is so pronounced that it might suggest AlphaZero
is a few evolutionary steps beyond the much simpler RL algorithm for
beating Tetris. Since most of us can fare pretty well in a game of Tetris, we
might not be all that impressed by an algorithm that can dominate the
game, even if it far outperforms us. And if it can’t beat Tetris and we can,
then it certainly can’t do other things that we can do well. But AlphaZero

 IntELLIGEnt DIsCoursE 185

can beat any of us at go and chess (and Tetris, were it given the chance);
therefore, we automatically worry about what else it can do better than us.
 What is interesting about AlphaZero is that it is fundamentally no
different from the reinforcement learning algorithm that beats Tetris.
The framework is similar. There is an environment and an agent. The
agent makes changes to the environment (moves in the playing field)
and evaluates its position relative to a reward system. The AlphaZero
algorithm can make moves and discover plays that human grand masters
consider “brilliant” and “creative,” but AlphaZero doesn’t know it’s being
clever. It’s not chuckling to itself and exclaiming, “Ha ha, I got him with
this one!” The real magic in AlphaZero comes from the ability of the
researchers who created it to frame the problem of chess in a way where
every move can be evaluated relative to a reward that must be maximized.
This is especially difficult with chess, where great moves are notorious
for having delayed benefits. It’s very difficult to evaluate the current
position in a game of chess because advantages can be very subtle. For
example, a player may make a move that costs him a high-value piece. A
shortsighted reward system may penalize this as a bad move, having lost
a valuable piece. But the move may have sacrificed the piece to open the
space for a particular attack ten moves later.
 This means that an algorithm that is going to learn to play chess
at a grand-master level must learn to evaluate the positions with a long
view of the game. This makes developing a reward system that evaluates
every move extremely difficult. And this is what is truly remarkable
about AlphaZero. The irony is that the genius of AlphaZero isn’t
AlphaZero. It’s the human researchers who designed it! The impressive
feat is that a group of people figured out a way to set up a reward
system and a score-tracking system that penalizes bad moves and
rewards good moves in chess—where the system itself discovers what is
“good” and what is “bad” simply by playing and evaluating its position.
Fundamentally, all the algorithm is doing is learning a distribution of
probabilities for each move it can make for the current position, where

186 Is tHE ALGorItHM PLottInG AGAInst us?

a high probability signifies a potentially good outcome.
 That’s right—like the other algorithms we saw earlier, AlphaZero
is also learning a set of probabilities. It doesn’t even know it’s playing
chess (or go). Just because it can beat a chess grand master does
not mean that it can also drive a car or write a novel or even help
a robot climb a set of stairs. This is very important to grasp because
it demystifies these algorithms and helps us evaluate progress against
reality. We might certainly be able to use the concept of reinforcement
learning to create a framework that can drive a car, help a robot walk
up a flight of steps, and maybe even write that novel. But for each of
these use cases, someone will have to frame the problem in terms of
rewards and develop a method for evaluating each move or change.
And these reward systems and evaluation metrics will be different for
driving a car and writing a novel; an algorithm that can learn to drive a
car by playing with the environment will not necessarily learn to write
a novel using the same reward system.
 This means we do not yet have a method with enough plasticity to
create a single algorithm that can learn to do everything we can do—in
other words, that has a general intelligence. Research is still ongoing in
this area, but we are not there yet. It may turn out that a single algorithm
cannot generalize to learn to perform all the different tasks humans can
do. It may be that we need a set of algorithms working together, each
capable of performing a set of specific tasks in different domains. But
currently, what we have is a set of algorithms that perform quite well at
very specific and well-defined tasks.

RESPONSIBLE ARTIFICIAL INTELLIGENCE

We have artificial neural network algorithms that can classify images.
These algorithms, as we saw, are quite successful in the field of computer
vision. We have algorithms that process natural languages and can write

 IntELLIGEnt DIsCoursE 187

prose that is so well written and coherent that it is indistinguishable
from something produced by a human. But all these algorithms have
limitations in that their performance is directly tied to the data they were
trained to model. An algorithm that was trained to distinguish between
oranges and apples will not be able to recognize certain diseases in chest
X-rays, and more importantly, the process of retraining these algorithms
to learn from a new domain isn’t trivial. I don’t think we know exactly
how our brain works and whether there is a single all-encompassing
biological algorithm or a collection of them highly tuned to specific tasks.
Some scientists believe it’s a bit of both. But although our brains may use
different algorithms to solve different classes of problems, our brains can
reconfigure themselves to learn these algorithms and create the necessary
neural connections that let a person navigate a busy intersection or get a
medical degree. Our progress in artificial intelligence has been in creating
algorithms that can achieve remarkable results with speech recognition,
others that can learn to classify healthy and diseased tissue from pathology
images, and others still that can visually navigate busy intersections (with
a few constraints, as we discuss later in the chapter), but we do not have a
general machine that can produce the neural connections, the framework,
and the necessary training for the system to learn and grow its capability,
automatically, across all the domains in which humans interact.
 So far, I have been trying to establish a position on the dangers
of AI with respect to current technological progress and gauge how
close we are to the dangers of a self-aware AI that is more intelligent
and capable than humans in every aspect of life. My view is that our
current algorithms are still too primitive, frail, and naive to generalize
well across their own domains, let alone advanced enough to overthrow
us and form their own government.
 So if these algorithms can’t take over the world yet, does that mean
we are in the clear? Does it mean there is nothing to worry about, and
can we proceed happily with the general adoption of AI in as many areas
of our lives as possible? In other words, is the latent—and, at times,

188 Is tHE ALGorItHM PLottInG AGAInst us?

overt—fear of AI a justified reaction, or is it all a misunderstanding? As
I detail below, my view is that there is certainly a need for discussing
some very concerning trends in AI; at the same time, the proliferation
of misconceptions has thwarted our ability to approach these pertinent
issues, to say nothing of getting a handle on them. We are focusing too
much on fantastic fears when there are more immediate problems to
address. Our AI systems might be primitive, and far from becoming self-
aware, but we must still employ them in responsible ways, or we will
expose ourselves to terrible consequences that will be difficult to reverse.
 I’d like to focus the following conversation about our fear of AI
on immediate concerns rather than future concerns. Future concerns
involve attractive concepts that are more closely aligned with science
fiction. These are concerns around self-aware or conscious systems that
can actively learn to work against us and overpower us and, indeed,
topple our reign in the hierarchy of species. No wonder these concerns
garner most of the attention from the media. We will briefly discuss
these fears and contrast them with the current progress in AI, but our
focus will be the immediate concerns. In other words, our discussions
centers on the dangers that AI systems pose today, which for some
reason do not get much attention. These concerns are related to how
we use, and overuse, the simpler neural networks and algorithms we
have discussed in this book. We do not need to wait for a self-aware
blender to chase us around the kitchen. It turns out that there is plenty
of harm that we can do with our current systems even if they aren’t self-
aware and actively trying to harm us.

THE PROBLEM OF BIAS

We touched on some of these immediate concerns in chapter 1. And
bias is one such big concern. Bias exists in data, and it exists in our
models, and we need to be aware of different types of biases and the

 IntELLIGEnt DIsCoursE 189

limitations they represent. If we don’t understand this very important
principle, then we will not know how to evaluate the types of mistakes
our systems are capable of committing. Before we dive into dangerous
examples where bias in our systems poses a real threat, we’ll spend a few
minutes defining the problem of bias.
 Let’s discuss the concept of bias again in a broad sense, and then
let’s focus on specific examples of how bias can lead to bad outcomes.
When we say that our data is biased, what we mean is that it represents
a snapshot of the world, and in most cases, it’s a very limited snapshot.
Why is this the case? Why is the data limited? Well, in some cases, it’s
limited simply because it’s expensive to generate training data sets. In
other cases, it’s limited because of a change in use case. For example, we
saw in chapter 3 that an algorithm that is trained to predict the height
of fifteen-year-old boys given the median population height for fifteen-
year-old boys in Toronto may perform well in Toronto, but if we move
the algorithm to a Scandinavian country where the median height is
higher than in Canada, the algorithm is not going to function well. In
this case, the algorithm was trained with data that was biased toward
the Canadian—specifically the Torontonian—population.
 This is admittedly a bit of an obvious example, and I doubt anyone
would have trouble identifying this specific bias. But let’s push this
idea a little bit further and consider an algorithm that was trained to
calculate a patient’s risk of developing heart disease. Suppose that the
data set used to train the algorithm contained samples consisting of
over 90 percent white males. This data set would be biased toward
a mostly white male population. If we use this algorithm to try to
assess the risk of heart disease for a female patient, the result may
not be very accurate. To understand why this might be the case, we
must recall how neural networks analyze data. The samples in the
data set are composed of different features that describe each sample:
age, sex, occupation, and so on. In this example, the algorithm is
trying to detect features that are predictive of heart disease in the

190 Is tHE ALGorItHM PLottInG AGAInst us?

population based on the corpus of training data it can access. We
know that males and females and people of all races are susceptible
to heart disease, but are the predictors the same, and do they affect
the outcome to the same degree, across all sections of the population?
The answer probably is no.
 In data from 2018, the U.S. Department of Health and Human
Services lists African Americans as 30 percent more likely to die from
heart disease than non-Hispanic whites. African American women,
for example, are 60 percent more likely to have high blood pressure
than non-Hispanic white women. So, when defining a training data
set for a heart disease–diagnosing algorithm, the features we decide will
make up the samples in the data set already have the potential to bias
the algorithm. If it turns out that some features (e.g., blood pressure)
are more important predictors for heart disease in some populations
versus other populations, then the data can be biased toward a specific
population sample.
 It’s important that we understand one simple fact: our artificial
intelligence algorithms don’t wake up and decide to be biased toward
a certain sample of the population. Instead, they pick up the bias
from the data we use to train them. If there is bias in the data, the
algorithm will be biased. We should try to remember this so that we
know how to react the next time a shortsighted and overly optimistic
company decides to train a chatbot by reading conversations from
internet forums, which inevitably results in a racist chatbot. This has
happened a few times, and in each case, the media sensationalizes this
as an algorithm making the conscious choice to be terrible. Indeed,
the algorithm is as aware of what it’s saying as a parrot is. A parrot that
learns racist speech from its owner is not at fault; nor is the chatbot
algorithm. Unfortunately, the conversations and postings that take
place on the internet are often terrible. We shouldn’t be surprised if a
chatbot that is trained on conversations from internet forums is biased
toward terrible conversation, but let me assure you, it doesn’t intend

 IntELLIGEnt DIsCoursE 191

to be mean. The defect is 100 percent the fault of the designers, who
somehow don’t foresee that the training data set contains many biases
toward the terrible.
 Besides producing awful chatbots, biased data can pose a real threat
to our lives. If we want to train an algorithm to assess specific health
risks in individuals, then our data set should constitute a balanced cross-
section of the population we want to monitor; otherwise, the predicted
risks to the underrepresented samples will be highly inaccurate. In other
words, we want our training data sets to contain as many samples as
possible, but we also want to make sure that every category of samples is
equally represented. Unbalanced data sets and statistical bias are not new,
and statisticians have always had to contend with this. Sometimes bias
is introduced in our data sets because of clear racism. We saw this in the
Boston Housing Price data set example. Sometimes bias is unintentionally
introduced due to circumstances. Consider a medical data set for cancer
research. Suppose we construct a training data set by scanning images of
biopsied tissue for patients who are suspected of having cancer. It turns
out that most biopsied samples don’t contain cancer. This is because
patients who get tested for cancer don’t always have cancer and because
the cancer isn’t always so spread out that the biopsied regions all show
signs of cancer. This means that when the training data set is constructed,
we should make sure to check that healthy and abnormal tissue are
equally represented. But this still doesn’t fully remove bias from the data,
because even if we have thousands of samples of images of cancerous
tissue and an equal number of images of healthy tissue, we may still
suffer from availability bias.
 How many patients were used to produce those samples? Do the
samples come from ten patients or one thousand patients, and do the
patients represent a good cross-section of the population? As you can
see, the problem of bias is a complex one, and it isn’t always immediately
clear in which direction our data might be biased. So the problem of
bias is neither new nor specific to AI. The problem that AI poses to

192 Is tHE ALGorItHM PLottInG AGAInst us?

biased data, which is novel, is the barrier to entry for processing the
data. Consider the heart disease data set we have been discussing. We
have already said it is biased toward a mostly white male population.
Before AI was accessible to most people, we would have had to involve
experienced statisticians to make sense of the data. In some cases, those
statisticians may have purposefully or carelessly missed the limitations
of the data, but in other cases, those statisticians would have flagged
the biases in the data set and perhaps even have suggested ways to
fix the data set. Advancements in AI and data processing, however,
have made it almost too easy for just about anyone with a weekend to
spare to learn how to write a few lines of code in Python and process a
data set without really understanding the data. The promise of artificial
intelligence algorithms is to augment our ability to process information
so that tasks that used to take years for a human to perform can now
take days or sometimes hours. But while our ability to manipulate data
and process it has been greatly increased, the complexity of the data and
our ability to really understand it have not fundamentally changed. So
now we can also misunderstand data at unprecedented scales.
 With this awareness, we must ask: How is this affecting us today?

ARTIFICIAL INTELLIGENCE IN THE JUDICIAL SYSTEM

We are increasingly using artificial intelligence algorithms to automate
different areas of our lives, from monitoring the stock market for
securities trading, to analyzing medical image pathology, to executing
law enforcement and the judicial process. I’d like to spend some time
discussing the use of AI in the judicial process and its implications,
because to me it’s one of the most dangerous use cases for AI, with the
potential to bend our society toward a darker, less hopeful future.
 First, let’s remind ourselves of how these systems work and explore
a different kind of bias. When a neural network processes information,

 IntELLIGEnt DIsCoursE 193

it encodes the decision processes in the set of weights given to the
neural connections. In a classification use case, the network outputs a
distribution of probabilities spread out among the different outputs—
in other words, spread out among the different prediction classes.
Suppose we want the network to distinguish between images of apples,
bananas, and oranges. The output of the network will be a distribution
of probabilities that the input image is either an apple, a banana, or
an orange. Notice that there is no option for “I don’t know” or “None
of the above.” When dealing with probability distributions, the sum
of the distributions must equal 1 (100 percent probability). That is,
when we add the probabilities that the input image is a banana, an
apple, or an orange, the sum equals 100 percent probability. This
means that the network assesses that there is 100 percent probability
that the input image is indeed one of the three possibilities. But note
that those possibilities, those three output classes, were chosen by the
neural network designer and do not represent the data set.
 Basing the three output classes on what the engineer wants the
neural network to detect depends on a largely incorrect assumption. It
assumes that the network will only ever see images of apples, bananas,
or oranges. If we are employing this neural network in a controlled
environment where we guarantee that all it could ever see are either
apples, bananas, or oranges, then that would be fine. Unfortunately,
in practice, when we deploy these neural networks in production
environments, we can’t always control what they see, and we can’t
always guarantee they won’t see something outside of what they were
trained to predict. Suppose our neural network sees a bunch of grapes.
The network will still output a set of probabilities that it is a banana,
an apple, or an orange, and together all those probabilities will sum
to 1. This is another example of bias—this time in our models. The
model is biased, by design, to output only a set of possibilities, and the
entire world must fit into those possibilities, and whatever doesn’t fit
will be jammed in nonetheless. We might naively think that an obvious

194 Is tHE ALGorItHM PLottInG AGAInst us?

solution is to add a fourth output class: the “None of the above” class.
Consider, however, what this means. It means that you must train the
neural network to distinguish between apples, bananas, oranges, and
everything else in the universe—not a very simple proposition.
 Another possible solution is to set a threshold for the probability
that we accept as our network prediction. For example, we could require
our prediction to be greater than 70 percent confident for acceptance.
Let’s assume that in the case where our network saw a bunch of grapes,
the output probabilities were 33 percent banana, 33 percent apple,
34 percent orange. The probabilities are all lower than the 70 percent
threshold; therefore, we determine that the network is not confident that
what it saw is either a banana, an apple, or an orange. This is a very
common approach to dealing with out-of-distribution sampling—that is,
samples in the real world that exist outside of the classes of objects that
the model was trained to recognize. While it is a workable solution, it
gives rise to a few nuanced points that must be considered and discussed.
 First, it assumes that the network will never give a high-probability
prediction for an out-of-distribution sample. What if, instead of a
bunch of grapes, the network had seen a cucumber. Considering that
cucumbers have a shape that resembles bananas more closely than grapes
do, we would expect the confidence level for the banana prediction to be
higher than 33 percent. Then we need to consider what is an acceptable
threshold for an accepted prediction. In low-stakes use cases like fruit
selection, it may not be terribly important to be all that accurate, and
if the increase in processing throughput afforded by the automation
is enough to offset the cost of mistakes, the automation may still be
worth it. But in cases where our future depends on these decisions and
assumptions, we need to be well invested in understanding every aspect
that drives the predictions.
 In the United States, the use of automation algorithms has made
it into the criminal courts. In 2014, the Baltimore-based nonprofit
organization Pretrial Justice Institute (PJI) urged the state of New Jersey

 IntELLIGEnt DIsCoursE 195

to adopt algorithms for risk assessment in setting bail. The algorithms
predict the likelihood of an individual skipping court or committing
another crime while awaiting trial. PJI’s urging was motivated by racial
inequities in the bail decision process. Their hypothesis was that a
mathematical algorithm—emotionless, number crunching, devoid of
“gut-feeling” ideological and cognitive biases—was going to evaluate
defendants of all races and socioeconomic backgrounds on equal footing,
based on data. In 2020, PJI reversed its position and petitioned for risk-
assessment tools to be removed from pretrial justice systems. Their reason
for the reversal? Instead of balancing the decision-making process, the
algorithms perpetuated racial inequities. What happened? It turns out
that the hypothesis was wrong. By assuming that an algorithm would
eliminate racial disparities because it’s just “looking at the data,” we
automatically surrender to a very important assumption: that the data is
good. But what if, as it turned out, the data is already biased?
 In 2014, in Coral Springs, Florida, near Fort Lauderdale, Brisha
Borden and Sade Jones saw a Huffy bicycle and Razor scooter sitting
unlocked as they walked to pick up Borden’s god sister from school.
They picked up the bicycle and scooter and proceeded to ride them. A
woman who witnessed this alerted the police that someone had stolen
the bike. Borden and Jones were arrested and charged with burglary
and petty theft. The stolen items were valued at $80. Borden had a
record for misdemeanors committed as a minor. In 2013, Vernon Prater
shoplifted $86.35 worth of tools from Home Depot. He was a criminal
with a long record, including an attempted-armed-robbery conviction
and having served a five-year sentence for an armed robbery. What is
interesting is that an algorithm predicted Borden, who is Black, to be at
a high risk of committing future crimes, but Prater, who is white, was
determined to be a low risk of committing a future crime.

It is difficult to prove why the algorithm was more lenient toward
Prater than Borden. First, these algorithms are proprietary, so we can’t
really investigate how they are trained or how they function. Second,

196 Is tHE ALGorItHM PLottInG AGAInst us?

if the algorithm is a neural network, its decisions are buried in the
neural connections, and for any given sample, we cannot trace an
explanation from the input to the output. We know that the neural
network produces an output for each input, but the output is driven
by the weights of the connections, which have been adjusted during
training, and it’s impossible to define exactly what led to a specific
prediction. Our inability to explain the output of a neural network is
itself a major problem with the use of neural networks in the judicial
system, but more on this later.
 One possible explanation for this outcome is that the data set
used to train the model was biased in a way that caused it to think
Borden was more dangerous than Prater. To be clear, it’s impossible
to say exactly what happened in this one case (maybe it wasn’t bias,
maybe it was a glitch), but bias is certainly a possibility, and we should
seriously consider the implications of using AI algorithms in criminal
courts. Let’s see one more example, and then we can discuss in depth
the dangers of deploying these algorithms in the justice system.
 This time, we look at the case of an algorithm used to alert police
of possible future crimes. In 2013, Robert McDaniel was living in
Chicago, in the Austin neighborhood, with his grandmother and adult
siblings, when police officers showed up at his door. Unfortunately,
Austin has one of the worst by-neighborhood murder rates in the city
and some of the highest concentrations of gun-related crimes. At the
time, McDaniel did not have a violent record. He had been arrested on
a few occasions for marijuana- and gambling-related offenses.
 This time, the officers were not there to arrest McDaniel; instead,
they were there to tell him something that seems straight out of a
dystopian sci-fi novel (possibly cowritten by George Orwell and
Arthur C. Clarke). It turned out that an algorithm, run by the Chicago
Police Department, had predicted that McDaniel would be involved
in a shooting. The algorithm’s prediction was informed by McDaniel’s
proximity to known shooters and shooting victims. The police officers

 IntELLIGEnt DIsCoursE 197

told him that the algorithm didn’t know whether McDaniel would be
a shooter or a victim; it just knew that McDaniel would be involved in
a shooting. And they were there to warn him that the Chicago Police
Department would be watching his every move.
 Take a moment to consider the situation. Imagine a police officer
showing up at your door and telling you that an algorithm predicted
that you will be involved in a crime, and therefore you will be placed
under surveillance.

In 2017, McDaniel was shot outside his neighbor’s house. Then,
in August 2020, he was shot again in an alleyway near his house.
Thankfully, he survived both attempts on his life. Well, the algorithm
seems to have gotten it right. Indeed, he was involved in gun violence.
But here is the problem: McDaniel had never had any serious trouble
before the police showed up at his door in 2013. So is the algorithm
really clairvoyant, or is there something else going on?

McDaniel has complained that the attention he started getting
from police made people in his neighborhood suspicious that he was
collaborating with them and labeled him a snitch. Again, it’s difficult
to say what exactly happened, and this book is not about investigating
what in fact led to those shootings. But you can undoubtedly see how
it’s possible that added police attention in certain neighborhoods might
contribute to some residents drawing the wrong conclusions about an
individual. We’re looking at this example to examine why algorithms
might predict certain outputs and to evaluate the implications of
those predictions. In the end, the algorithm was right: McDaniel was
involved in a shooting (twice). But the prediction appears largely self-
fulfilled. The irony is that the added surveillance that caused McDaniel
unwanted attention and put his life in danger did not save him when
he was being shot.

The problem with artificial intelligence in the cases we have discussed
so far is that when an algorithm is used to predict the likelihood that
you will commit a crime, the algorithm is not really analyzing you.

198 Is tHE ALGorItHM PLottInG AGAInst us?

The algorithm was trained by analyzing a data set. The data set might
contain a number of people that share a set of descriptive features that are
similar to yours. For example, the samples in the data set might consist
of people in the same neighborhood as you or in neighborhoods with
similar socioeconomic profiles. The people in the training data set may
be surrounded by gun violence, and many of them may have ended up
committing gun violence. When the algorithm tries to fit your features
to its knowledge base, your features may align well with others who have
committed a crime or been involved in gun violence. But what if you are
different? What if, while living amid poverty, desperation, and crime, you
have not responded to those pressures in violent, unlawful ways? Then
you better hope that the training data set involved an equal number of
people in the same exact situation as you who have also managed to not
commit a crime while living in a high-crime area. Unfortunately, we
don’t get to see how these algorithms are trained.
 Whether we are trying to decide the risk of someone being involved
in a crime based on their living situation and proximity to criminal
actors, or trying to determine the likelihood that they will commit a
crime in the future (as in the case of deciding bail qualifications), if
we base our decisions on statistical models alone, then we are making
our decisions based on the baggage that person brings simply by being
placed in a category with people who have been involved in crime.
There is something final—and gross—about this. Humans are not
deterministic machines.18 But the AI algorithms we have discussed thus
far are. A human faced with a given problem may respond differently
each time. But an AI algorithm that is trained and deployed will always
provide the same response to the same input. This disparity between

18. There is a debate in academia about whether humans are in fact deterministic. Most
scientists believe humans are deterministic and free will is simply an illusion produced
by the complexity of predicting our behavior. Our behavior depends on the state of our
system (mind, body) and the environment (the universe) in which we operate. Since we
can’t measure and interpret the state of every molecule in our universe to predict our
behavior, then we appear to possess free will, and thus we appear nondeterministic.

 IntELLIGEnt DIsCoursE 199

humans and AI should at least be further explored before we entrust an
algorithm with our future. The whole premise of the modern judicial
process is that we would rather let a guilty person walk free than have
an innocent person sent to prison.
 Think about being in front of a judge, and let’s look at two
hypothetical scenarios. First, let’s say that you did not commit a crime
but are being accused of committing a crime; then let’s consider the case
where you committed a crime, you are remorseful, and you promise
yourself that you will do your best to turn your life around and never do
it again. Let’s further grant the fact that a large percentage of criminals
do indeed feel or appear to feel remorse during trial and make many
promises to turn their lives around but in the end continue a life of
crime. We must also grant the fact that there are many people who are
surrounded by crime and are never involved in crime, and there is a
small percentage of people (it doesn’t matter how small) who turn their
lives around after committing a crime. When you are in front of a judge,
you hope that they will see past your baggage. You hope that you can
convince them that regardless of what has happened in the past, you can
still change your life; whether you have committed a crime or you are
surrounded by criminals, you want to convince the judge (or the jury)
that you are going to improve your situation and change your life. Now,
what if instead of standing before a judge, you are facing a statistical
model. Well then, there really is no more “you.” There is y’all and what
y’all did. There is no discussion of or pondering the future. There is only
the past and what others in similar situations have done. The idea that
people can change and that you can decide in a moment to change your
life—that idea is gone.
 The natural counterargument to the above discussion is that I am
being naive, so let’s address that. Indeed, judges can be biased, racist,
or just plain incompetent. Just because you find yourself in front of a
human judge does not mean you will get a fair judgment. This was the
premise of the Pretrial Justice Institute’s advocating for an algorithm to

200 Is tHE ALGorItHM PLottInG AGAInst us?

make bail judgments, to be impartial. But not all judges are the same,
and not everyone is racist. Everyone has cognitive biases; however,
some judges can see beyond circumstances and consider the impact
of a sentence against the future of a person’s life, and even when the
evidence suggests a dark future, they can offer hope. But all statistical
models, at least of the classes we are discussing, are similar in that
they are not looking beyond your circumstances at a potential “you”;
they are looking at data and making decisions based on the data they
saw during training. This sounds straightforward, but we must again
remember that the data itself is often biased. With a statistical model,
there is no redemption; there is just history. If we lose the hope for
redemption in the judicial process, however flawed it may already be, it
will be a step in the wrong direction.
 Before we move on from the criminal justice and policing use case,
it is important to restate that these algorithms do not have a personal
agenda; they do not intend to discriminate; all they do is analyze data.
A particular problem with data is that many engineers do not spend
enough time understanding the data they use because they assume that’s
the algorithm’s job. But once we understand that the algorithms are
looking at the data samples’ features and reshaping, transforming, and
projecting those features in different ways to find a predictive direction,
we realize that the features that make up the samples are extremely
important. By selecting a set of features around which to build a data
set—for example, age, sex, race, living conditions (neighborhood, size
of dwelling, number of adults per dwelling), income—we are already
introducing biases into the system.
 We are saying, “We don’t know which of these features are the
predictive ones—that’s why we need a neural network. But we at least
know that the answer must come from one of the features we have
identified.” This means that from the start we build a box to bound the
problem of predicting an outcome. And that box is built around the
initial features we select for our data set. We need to be very careful that

 IntELLIGEnt DIsCoursE 201

the features we select are not pointing us in a discriminatory direction
from the start. Now let’s assume that we can build the perfect, balanced
data set. Should we then automate aspects of the judicial process? Well,
what do we mean by having a balanced data set? Balanced in which
directions? Maybe we can finally agree that we have produced a data
set that is not racially or socially biased in any way, but what about in
terms of outlook? Does it have a means to identify individuals who,
against all odds, can end the negative cycle and change their lives? Or
is the data set myopic in its design such that it will simply identify the
likelihood of committing a crime based on what a statistical majority
of other samples in the same situations did? I think that if we can create
an algorithm that demonstrates fairness over an entire population and
that preserves the potential for individuals to hope and to redeem
themselves in an instant—to the extent that is possible—then we will
finally be able to automate judicial systems, because then we might
have a mechanism that is better at making these discernments than
humans. But we are certainly not there yet.
 When it comes to employing neural networks in the courts,
the biggest hurdle might be the explainability problem. As we have
discussed, when neural networks make a prediction, we cannot trace
the steps of the prediction back and explain the network’s decision.
It is not possible to argue and attempt to change the network’s
“mind.” An integral part of our judicial process is that the accused
can have representation and argue their version of the story—a much
more difficult proposition if we cannot understand how the “judge”
(i.e., the statistical model that has, in theory, replaced the human
judge) arrived at its decision. You might be thinking, “What if the
automation process that the judicial system used were to consist of
multiple neural network models each arriving at an independent
decision by analyzing the data?” It has long been known that a
collection of models (in AI literature this is referred to as an ensemble
of models) performs better than a single model. Indeed, it’s likely that

202 Is tHE ALGorItHM PLottInG AGAInst us?

if the predictions of an ensemble of models agree, the prediction is
better than if it was made by a single model. But note that “better”
here means “better with respect to the data.” An ensemble of models
does not fix the data bias problem, and it still does not address
the explainability problem. Even if several models agree that you
are guilty, does that mean you are? Would you not want to fully
understand exactly what criteria these models used in determining
to convict you? Consider that multiple human judges can agree on
your guilt, and you are still allowed to appeal their findings. You have
several chances to do this, all the way to the Supreme Court.

WHY ACCURACY IS A FLAWED MEASURE

Finally, let’s address the accuracy problem. It is not uncommon to read
an article in the media that discusses the idea of accuracy in a machine-
learning algorithm. Indeed, when it comes to algorithms aimed at
replacing human judges in some parts of the judicial process, often the
proponents of such algorithms boast the accuracy of the algorithms
as greater than human judges in studies involving a large number
of cases. The implied premise is that if an algorithm is capable of
greater accuracy than a human, it would constitute an improvement;
therefore, we should replace the human with the algorithm. On the
surface, this sounds correct, but accuracy has a double meaning. The
common definition of accuracy is tautological in that a high-accuracy
measure is interpreted as a measure of correctness. If process A has
higher accuracy than process B, then we assume process A to be more
correct than process B and, crucially, to make fewer mistakes than
process B.
 In science, accuracy is a well-defined concept. It is the proportion
of correct observations over all the observations. Suppose we have
twenty criminal cases, and of those twenty cases, ten were correctly

 IntELLIGEnt DIsCoursE 203

assessed by an artificial intelligence algorithm. The accuracy would
be 10/20, or 50 percent. If nineteen cases were correctly assessed, the
accuracy would be 19/20, or 95 percent. Studies have cited human
judges’ ability to predict recidivism—that is, the likelihood of a
suspect to reoffend—as 60 percent accurate.19 If we can come up
with an algorithm that’s 75 percent accurate, then it will already be
performing better than humans, correct? It turns out that the answer
is not necessarily. A measurement of accuracy does not tell us anything
about the degree to which the algorithm generates false positives or
false negatives.
 For an algorithm predicting recidivism in suspects awaiting
trial, a false positive prediction means that the algorithm identified a
suspect as highly likely to reoffend, but the suspect never reoffended.
A false negative prediction would be if the algorithm predicted that
a suspect is very unlikely to reoffend, but the suspect went on to
reoffend. Tables 4.1 and 4.2 give us an idea of the impact that false
negative and false positive predictions can have on the accuracy of
the predictions.

Table 4.1 Predicting and observing recidivism
in one Hundred Cases (First Hypothetical)

Observed behavior

Predicted behavior Suspect reoffended Suspect did not reoffend

suspect reoffends 35 5

suspect does not reoffend 20 40

19. Edward Lempinen, “Algorithms Are Better than People in Predicting Recidivism, Study
Says,” Berkeley News, Feb. 14, 2020, https://news.berkeley.edu/2020/02/14/algorithms-
are-better-than-people-in-predicting-recidivism-study-says/. For more details, please see
the academic sources linked in the article cited, which are also included in the chapter
sources at the end of the book.

204 Is tHE ALGorItHM PLottInG AGAInst us?

Table 4.2 Predicting and observing recidivism
in one Hundred Cases (second Hypothetical)

Observed behavior

Predicted behavior Suspect reoffended Suspect did not reoffend

suspect reoffends 35 20

suspect does not reoffend 5 40

Table 4.1 describes a hypothetical study of recidivism in one
hundred suspects awaiting trial. An algorithm analyzed those
suspects and predicted that forty of them were likely to reoffend.
During the pretrial period, thirty-five of those suspects went on to
reoffend, and five did not. Similarly, the algorithm identified sixty
suspects as unlikely to reoffend, but it got twenty predictions wrong;
twenty of those suspects did in fact reoffend. Table 4.2 describes the
same one hundred cases, but here the algorithm identified fifty-five
suspects as likely to reoffend. Of those fifty-five suspects, twenty were
incorrectly classified and did not end up reoffending. The algorithm
also identified forty-five suspects as unlikely to reoffend, but five of
those went on to reoffend.

The first thing we should note about these two different sets
of results is that the accuracy is the same in both cases. Each time,
the algorithm correctly classified seventy-five out of one hundred
suspects, yielding 75 percent accuracy. The impact, however, that the
algorithm has on the suspects and the overall population is quite
different when comparing the two cases. In the first case (table 4.1),
because of the algorithm’s mistakes, twenty suspects were set free
and were allowed to reoffend. In the second case (table 4.2), twenty
suspects would have been kept in jail unnecessarily.

 IntELLIGEnt DIsCoursE 205

 Clearly, an algorithm that makes no mistakes is preferable, but it is
highly unlikely that we will ever have such a thing; even humans aren’t
great at predicting behavior. The point I am trying to make here is that
accuracy is often overused when trying to indicate the effectiveness of
an algorithm, but accuracy alone doesn’t always tell the whole story. In
use cases or situations where the results of an algorithm carry a large
weight of responsibility (e.g., in the judicial process or in health care), it
is very important that, in addition to accuracy, we discuss the types of
mistakes the algorithm makes. In the hypothetical recidivism example
just discussed, it’s difficult to say a priori which is a better result. If the
choices are between an algorithm that’s likely to err on the side of releasing
suspects who might reoffend or a stricter algorithm that’s likely to keep
more suspects in jail than necessary, the right choice might depend
on the types of crimes the suspects are accused of having committed.
Consideration should also be given to, for instance, how an individual
being kept in jail affects their family versus the risk of reoffense. If
nothing else, this example illustrates the nuances involved in the process
of predicting human behavior and the cost of mistakes in that process.
When debating the validity of replacing human judges with automation,
we can’t be seduced simply by the prospect of higher accuracy.
 Before we move on from the discussion of AI in the judicial
process, it’s important to make something clear. While it’s understood
that human judges are not perfect (they can be prejudiced, can make
mistakes, and indeed can be biased), the concern with a premature
migration to automation is threefold. First, to replace an existing system
with a new one, the new system should be clearly better than the old
one. Second, because automation algorithms fundamentally work by
analyzing data, many people feel inclined to trust their results and find it
much more difficult to disagree with or dispute the results of a machine-
learning algorithm than those of a human. Studies have documented
human decision-makers’ inability to oppose recommendations made by
automated systems. This observed behavior is in part born out of an already

206 Is tHE ALGorItHM PLottInG AGAInst us?

biased and ingrained acceptance of a machine’s ability to outperform
us in every setting, from mathematical calculations to planning and
intelligence. (This clearly feeds the fears of AI’s world domination. AI
systems are not just out to get us; they are also more intelligent and more
capable than we are.) But, in addition, we have developed an element
of complacency over time as we have witnessed strings of automated
successes and gained confidence in machine performance. Still, while
automation systems may succeed most of the time, the edge cases, when
they fail, may be devastating. Therefore, we need to be fully confident
that the algorithms are indeed an improvement over a human in every
possible way. Lastly, until our algorithms can intuit potential and predict
change in an individual regardless of their past, the rest won’t matter. It
will not matter how accurate they are, and it will not matter how balanced
their false positive and false negative mistakes are. They will nevertheless
be nudging us toward a less hopeful future, without redemption. Clearly,
there is a lot that must change in the way we interact with and discuss AI
before we can entrust it with our freedom.

ADVERTISING WITH ARTIFICIAL INTELLIGENCE

We have been examining current applications of AI that require
more nuanced conversation and awareness from the public. These
are areas of immediate and real concern in the application of current
AI techniques. Another application of AI that should be generating
a lot more discourse is advertising (or any area where AI systems can
influence our behavior). In the previous section, we discussed bias as
the main concern with AI algorithms. In this section, we center our
concerns on the method by which these algorithms learn: optimization.
 Recall from chapter 3 that machine-learning algorithms learn
by optimizing some objective function. The objective function is a
method by which the learning process can measure its progress toward

 IntELLIGEnt DIsCoursE 207

a specific goal. In some problem domains, the goal is to minimize a
loss function—for example, to minimize the difference between the
model’s output and the ground truth. In other cases, such as the
reinforcement learning briefly discussed in this chapter, the goal might
be to maximize a certain reward function. Invariably, however, the
system can be framed as an optimization problem where the goal is
always to reach an optimal value.
 Let’s use an example from chapter 1: handwritten-digit recognition.
Suppose we want to train a model to recognize handwritten digits
and classify them as 0, 1, 2, . . ., 9. If you recall, we can use a training
data set of 60,000 images of handwritten digits that are all labeled
with the ground truth: images of digit 0 contain a label of 0, images
of digit 1 contain a label of 1, and so on. During the initial stages of
training, the model won’t be very good, so it might predict that an
image of a 5 is a 2, for example. The training process then measures a
loss (a sophisticated difference measurement) between the predicted
value and the ground truth and adjusts the model to improve its
predictions in subsequent runs. Every adjustment that the training
process makes to the model is done to optimize a certain objective:
to correctly recognize the digits. Optimization problems have been
shown to be extremely powerful at slowly shaping a model to be
more and more effective at achieving some goal. What if, instead of
predicting the correct label for an image of a digit, the goal of the
model is to influence us in a certain way? For example, what if the
goal of an algorithm is to get us to buy more products of a certain
brand or from a particular online store?
 We like to think of ourselves as obdurate, strong-minded, and
rational individuals who deliberate on the reasons for our behavior.
We like to think that we have our own opinions and needs, and we
are, to quote a great sitcom, “the masters of our own domain.” But
the truth is that we are incredibly malleable and, en masse, not all
that difficult to influence.

208 Is tHE ALGorItHM PLottInG AGAInst us?

Suppose the goal of an algorithm is to get you to buy a shirt from
a certain store. The algorithm may send you a few shirt ads. You might
see the same ad once a day for a couple of days and not click on it.
Maybe on the fifth day, you click on the ad and decide to check out
that darn shirt and see what’s so special about it. The algorithm might
learn that it takes you a while to click on an ad, but eventually you do,
so in the future, before relenting or changing tactics, it may stick to the
same strategy for at least five days.

Now let’s say you visit the site, but you still don’t buy anything.
How does the algorithm know about you anyway? Why is it targeting
you? Remember that free coupon you got a few months ago for cotton
socks? Your friend gave you the coupon as part of the store’s “add a
friend” campaign. That’s how the algorithm knows you, and that’s how
it knows of your connection to your friend. Don’t worry, the algorithm
is also sending ads to your friend, and it turns out that your friend loves
that shirt and buys it right away. Now the algorithm tells you that your
friend just bought an awesome shirt and asks, “Wouldn’t you like to
keep up with your friend and get a shirt too?” If you buy it this time,
the algorithm incorporates that information and now knows a way that
worked at least once to get you to buy something.
 This is just an example, and of course not everyone cares about
what their friend buys, but some people do. And more importantly,
each time the algorithm interacts with you, it is measuring your
response, and it is adjusting itself to maximize the likelihood that in
your next interaction, you will react the way it wants. The truth is that,
for as intelligent and self-aware as we think we are, we don’t stand a
chance against the relentless power of an optimization algorithm. Now
think of the most vulnerable section of the population when it comes
to influencing. Is it truly any wonder that anxiety and mental health
issues in teens are at an all-time high?
 There is no question that advertising works. Companies spend
billions of dollars every year on marketing campaigns because they

 IntELLIGEnt DIsCoursE 209

understand that if they find the right connection between a large part
of the population and their product, they stand a higher chance of
selling that product. Most of the time, this connection is an emotional
connection. Think about some of the most successful ad campaigns
from companies like Apple, Coca-Cola, or Nike. They spend very little
time, if any, speaking about the product and what it does. Instead, their
ads are about lifestyle. They show their product being used by an elite
athlete or a celebrity in some idyllic location. They make you feel like
maybe if you had that product, you could also have an awesome life
and spend your winters skiing in the Swiss Alps.
 Now, of course, not everyone is influenced by the same ad. And
some people are harder to influence than others. Classically, ad campaigns
were informed by focus groups. The focus groups were small groups of
people that were meant to represent a certain sample of the population.
Based on how the focus group reacted to the ad campaign, the companies
would extrapolate on how successful the campaign would be on the
larger population. But focus groups aren’t perfect representations of a
large population, and so the data they gathered from these groups was
noisy. But what if they had a method to tailor ads or entire campaigns to
smaller directed groups of people or even specific individuals? With the
algorithms we have discussed so far, it is possible to send ads to specific
individuals based on their online shopping history. (In fact, it happens
every day.) It is then possible for the algorithm to learn strategies that
work to get you, specifically, to maximize your spending habits.

You may think, “Well sure, sometimes I listen to these suggestive
ads, but if I buy the product, it’s because I needed it anyway; it’s not
because some algorithm told me to.” Let’s test that hypothesis. Think
of all the products you have bought in the last year that were suggested
by your favorite online store. How often did you end up using it, and
did it really improve your life? Again, it’s quite possible that for you
specifically we are not there yet, and maybe you are impossible to
influence, but most of the population is not like that. In fact, companies

210 Is tHE ALGorItHM PLottInG AGAInst us?

are now spending billions of dollars on researching and developing
these types of recommender algorithms, because they see the impact
such algorithms are having on spending habits.
 Perhaps shopping isn’t your thing. Maybe you use streaming
services to watch your favorite movies or TV shows. Have you noticed
that when you log in to your favorite streaming service, your landing
page is different from your grandma’s? Last week, you decided to watch
a couple of true-crime documentaries, and now when you search
documentaries, they are mostly about true-crime stories. How often
have you sat down with the idea to watch only one or two episodes
of your favorite series only to spend your entire Saturday binging the
whole series? The types of algorithms that power these services and
suggest what new show or movie you should watch based on your
history are uninspiringly called recommender systems. Their job is to
maximize your time watching something. We also see these algorithms
on news sites. In recent years, we have seen the impact recommender
systems can have on dividing a population by creating so-called echo
chambers. This describes what happens when recommender systems
funnel like-minded people into the same corners of the internet, away
and protected from differing opinions or facts.
 If you start searching for flat-earth ideas, you will progressively
get more stories or comments about flat-earth conspiracies. But
what’s interesting is that you will also get more suggestions to read
about other conspiracies, like Big Foot or Pizzagate. Eventually, some
people fall down the rabbit hole of conspiracy theories, and because
the same algorithms have found other people with similar proclivities
for conspiracies, they all start building on each other’s comments,
and there is no one in the group with a different opinion to offer
some perspective. The algorithm is also not going to suggest material
disputing the flat-earth idea because the goal of the algorithm is not
to teach or to differentiate between facts and fiction. The goal of the
algorithm is to maximize traffic to the “news” site. And maximizing

 IntELLIGEnt DIsCoursE 211

something is one of the things that algorithms can do very well.
 When it comes to algorithms that interact with humans with
the goal of then influencing human decisions, we need to be very
careful. In these systems, the human becomes another variable, and
the root of the problem is that the goal of the algorithm is not aligned
to the well-being of the human. The amount of disinformation and
division in the world today is in no small part due to how easily we
can be influenced by recommender systems. Propaganda and division
aren’t new forces we have to contend with. They have always existed.
The problem we have today is scale. As our algorithms become more
powerful and more capable of tuning into our fears and insecurities to
drive our behavior, the more profound their influence will be, which
can have catastrophic consequences—such as perpetuating biases and
inequalities or maximizing a company’s profits at the expense of our
mental health or compromising our ability to discern fact from fiction.
This—not robot overlords—is what worries me about AI.

Why have we spent so much time discussing biases and critiquing AI
in this chapter? Shouldn’t a book about AI promote its benefits?

The purpose of this book has been, first and foremost, to inform.
Its aim: to explain how some common AI algorithms work and to shift
the conversation from hypothetical future problems that we don’t know
how to solve—problems that, indeed, we don’t know when, how, or if
they will manifest—to current problems we must be discussing. Now
that we have covered some chief areas of concern, we can ask whether
it is all doom and gloom or whether there is hope. Are there positive
reasons to pursue AI?
 I spend a lot of time researching artificial intelligence algorithms,
and the primary reason I wrote this book is because I wanted to
share the fascinating history of artificial intelligence and the elegant
mathematics behind its development. These algorithms and their inner

212 Is tHE ALGorItHM PLottInG AGAInst us?

workings are too remarkable to be known about or understood only by
a small group of academics and engineers. To be fair, this exclusivity
isn’t unique to artificial intelligence. Much of the beauty and elegance
in science only a few get to see. We don’t build galleries dedicated
to theorems and proofs. It’s easy to blame the public for their lack
of interest in the sciences simply because “it’s hard.” But a fair bit of
blame should also go to the scientists who obfuscate and convolute
information with arcane phrases and difficult-to-understand language.
 We can appreciate science at many varied levels. We can become
scientists and understand every technical aspect of a theory, or we can
forgo delving into the technicalities and learn about a theory’s implications
and how it might apply to our lives. In a similar way, when we go to an
art museum and gaze at a Renoir painting, we don’t need to be an artist
or even know how to hold a paintbrush to enjoy the work. Sure, an artist
might be able to appreciate the different brushstrokes or understand
that the paint itself and how it has been prepared are integral parts of a
masterpiece. Great artists mix their own paints by suspending different
amounts of pigment in oil. This creates varying degrees of translucency
in a painting. An artist can view a masterpiece and recognize these details
in the work, just as they grasp perspective and how 3D objects can be
projected onto a canvas without losing the spatial relationships in a
scene. But those of us who don’t understand these details can still derive
enjoyment from viewing art. We can still marvel at a beautiful painting
and what someone can do with a bit of color and a brush. This is an
important part of being human—appreciating and taking pride in what
we can accomplish as a species. Even if we personally can’t sculpt the
great David, we can at least enjoy knowing that someone could. Much
of the beauty and elegance in the sciences is accessible only to those who
elect to study those subjects, and most people live entire lives without
being exposed to those qualities, without having the chance to marvel
at what we as a species have achieved. That is unfortunate because we
only have one life to live. I believe there is a lot of beauty and elegance in

 IntELLIGEnt DIsCoursE 213

artificial intelligence, and the principles behind these systems are simple
enough that they can be understood by anyone. Our discussion of fears
and the downsides of AI can be misconstrued as a certain apprehension
on my part or distrust of AI. So I think it bears clarifying where I stand
on AI and the future.
 I consider AI one of the most interesting areas of computer science
today. Due to relatively recent advancements and its capacity to affect
our lives, it gets more attention from the media and the public than
any other subject in computer science. When concerns about AI are
brought up, they almost inevitably involve big existential threats. They
involve AI systems gaining awareness and somehow formulating a plan
to get rid of us, an inferior species. It’s impossible to say whether AI
algorithms will ever become self-aware and generate their own agendas
and “free will.” It’s impossible mostly because we do not yet have a
scientific theory of consciousness. We do not understand how it arose
in us or how it could arise in others, so today it seems implausible to
create an artificial system truly capable of being conscious when we
don’t really know how it could be done. Let’s pause and allow that
thought to sink in. As we have seen, our AI algorithms today are more
“A” than “I.” We can stop worrying about a robotic revolution for just
a minute. Despite all the hype, we don’t yet know enough to create a
conscious AI; this danger is not imminent.
 Of course, we also don’t know how long it will be before a theory
arises that changes everything and we get self-aware robots. The best we
can do today is start having conversations about the ethics of conscious AI.
If it ever becomes a reality, how should we treat it? What responsibilities
should we bestow on it, and what are the risks of making it responsible
for running vital systems? If such systems are truly conscious, is it cruel
to have them endlessly perform mundane tasks? And are we allowed to
shut them down when we no longer need them, or is that like killing
an intelligent being? What are the rights of artificial conscious systems?
We should have these conversations before anyone attempts to create

214 Is tHE ALGorItHM PLottInG AGAInst us?

consciousness, and failure to have a plan in place could create whole new
areas of unexpected problems and threats.

Lastly, we must address a fundamental concern of AI—which
might be exacerbated by a conscious AI in the future. This concern is
known as the alignment problem. The alignment problem describes the
phenomenon where the path to reaching the goal for an AI system,
even if the goal is initially defined by humans, may not be aligned
with our own well-being. Stuart Russell, a British computer scientist,
in his 2019 book Human Compatible: Artificial Intelligence and the
Problem of Control, postulates a set of possible scenarios where an AI
system could very well destroy humanity in the process of trying to
accomplish goals set out by humans. In one such example, he imagines
a geoengineering robot that is tasked with deacidifying the oceans. In
the process of deacidifying the oceans, the robot devises a plan to use
up all the oxygen in the atmosphere: an unfortunate side effect being
the death of all oxygen-dependent organisms on earth, including us.20
This example illustrates the problem of explicitly defining goals for an
AI system that shares very little with us. Yes, we might design these
systems, but they operate in ways that are very different from our own
way of functioning. Although our algorithms come from our own
imaginations, future conscious AI systems are unlikely to share our
values, concerns, and ultimate goals. This last part is subtle. Even in
Russell’s example, superficially it appears that humans and AI share the
same goal, deacidifying the oceans. But at a fundamental level, our goal
is to survive and prosper.

We can imagine the alignment problem as existing on a sliding
scale where we start at one end and the issue of alignment exists in an
immediate time frame. We discussed these issues in the first half of

20. Stuart Russell’s examples of bad manifestations of the alignment problem are not
necessarily specific to conscious AI. Indeed, all the problems we have been discussing thus
far—AI in the judicial process, advertising, and so on—constitute weaker forms of the
alignment problem. But with conscious AI systems, the problems would be greater since
presumably these would be more advanced systems, more integrated into our society, with
more freedoms to move and make changes to and decisions about our lives and future.

 IntELLIGEnt DIsCoursE 215

this chapter, where the algorithms we are using are trying to maximize
the likelihood of some desired outcome based on an optimization
process. Due to the simplicity of the algorithms and the complexity
of the environments in which we sometimes deploy them, however,
a successful outcome as discovered by the optimization process can
ultimately be harmful to us.

The further we move to the right, say, on the sliding scale, the more
dire the consequences of misalignment between humanity’s and the AI’s
goals. Eliezer Yudkowsky has been warning the world about what he
perceives as the negative implications of artificial general intelligence
(AGI) for years now. AGIs are algorithms with the capability to adapt and
learn—autonomously—to solve any class of problems that human beings
can solve. In Yudkowsky’s views, this process risks running out of control
and leading to “artificial superintelligence.” Surely, AGI algorithms are
still far beyond our current capabilities; nonetheless, the thought of an
AI seeing us in the same light that we see chimps, as interesting creatures
but far too primitive to hold an intelligent conversation with, must be
unsettling. In a blog post where he explains his “death with dignity”
strategy, Yudkowsky goes into detail concerning the dangers we face. But
whereas he seems to suggest that it may already be too late to stop the
eventual machine takeover, I hold a more positive view. After all, we
are still in charge. We still (as humanity) get to decide where we deploy
these systems. Any problems we run into today with AI are purely self-
inflicted. We should, however, understand under which conditions we
might lose control and reach the point where it will be too late.

The alignment problem is fundamentally the same whether we
are discussing an AGI or the AI algorithms we have visited thus far;
the only difference is the scale of the problem. The more powerful
the algorithms, the larger the landscape of possible responses leading
to situations that are not beneficial to us. It is important to note that
AGIs are not necessarily sentient or conscious systems. It is entirely
conceivable to reach an artificial superintelligence without generating

216 Is tHE ALGorItHM PLottInG AGAInst us?

consciousness. In this sense, the danger is not in the algorithm being
out to get us. The danger is simply in us being in the way.

If we continue to move our imaginary slider to the right, we can
imagine self-aware and conscious systems at the far end of the sliding
scale. If we take a moment to carefully consider the conscious human
mind in contrast with an AI algorithm (conscious or not) trained to
maximize a specific goal, we will notice an important distinction that
makes all the difference. In our thought experiment, we can imagine
that our conscious process might be driven by a set of objective
functions similar in principle to those driving our AI algorithms. But
unlike the AI algorithms we designed, the objective functions driving
our conscious process have been honed by millions of years of evolution.
We do not have a single objective function that we must maximize;
we may have hierarchies of functions ensuring that our pursuit of
higher-level goals does not ultimately end in our own demise. To take
an example from Nick Bostrom’s 2012 article “The Superintelligent
Will: Motivation and Instrumental Rationality in Advanced Artificial
Agents,” an AI algorithm purposed with maximizing the number of
paper clips in the universe may find that humans stand directly in the
way of achieving that goal. It is us or paper clips, and the AI algorithm
is not compelled to choose us. A human provided with the same goal of
maximizing the number of paper clips in the world might arrive at the
same conclusion but avoid wiping out humanity because of competing
goals from lower-level objective functions linked to our own survival.

Consider AI reaching a level of sophistication where its objective
functions are complex hierarchies driven by some evolutionary
process (or design) that fundamentally aims to maximize the survival
of the algorithm. The more power we grant to these algorithms—
connecting them to our power grid, essential services, internet,
military—the more difficult it will be to control them. The complexity
of their objective functions may be such that the algorithms are
indistinguishable from conscious beings, but crucially, their goals and

 IntELLIGEnt DIsCoursE 217

value systems, not having gone through our evolutionary processes
and experiences (which drove us to control our violence, collaborate,
and trust each other), will not resemble ours. This is the point where
we might finally lose control of a much more intelligent algorithm
that, now, also cares about its own survival.

The alignment problem encapsulates all such cases where, even after
we have carefully described a set of goals, the fundamental differences
between us and AI systems mean that even when the AI systems are
not purposefully out to get us, our realities are so distinct that intrinsic,
undefined outcomes will not align to a successful cohabitation. The
funny thing about the alignment problem—often reserved for use as
an ominous warning against AI rebellion—is that it is hardly special. It
is simply a question of where along the sliding scale we find ourselves.
Today we are still near the very beginning. We do not have AGIs, and
we will not have sentient machines anytime soon, at least not until
we agree on what “sentience” or “consciousness” even means. But we
must be aware of the alignment problem at each time step. That is the
message of this book. We can worry about the problems of the future,
but we certainly need to understand the problems we face today!

And while there is a lot to consider and to worry about with respect
to AI, and important risks that must be addressed, consciousness
and AGIs are not the only threats. That was the point of the first
half of this chapter—to encourage an honest conversation about the
systems we have today and understand that we are already using our
very primitive AI systems in ways that can harm us and are harming
us. Instead of only focusing on a future plausible threat, perhaps we
should also focus on the current ones, even if they are less exciting.
 Once we are aware of the problems and have a basic understanding
of how these systems work, we can start to differentiate between reality
and fiction. We can see that, like any tool in our history, AI can be helpful,
and it can be damaging. Having these discussions should empower us to
believe that we can select the beneficial use cases and drop the harmful

218 Is tHE ALGorItHM PLottInG AGAInst us?

ones, instead of fearing all aspects of AI and deciding that we want to
ban it (as if that were possible). That’s why researchers need to be honest
and the public needs to be informed. History has shown that once we
discover a tool that can be helpful, we are not capable of abandoning
it even if it poses significant risks. My hope and my goal have been to
help expose the benefits and the risks of AI, especially of our current AI
systems, to attempt to combat irrational fears and replace them with the
need to formulate helpful actions.

We have talked about the drawbacks, so let’s close by discussing
the advantages to adopting AI solutions to various problems we

face. Where can AI help? Are there immediate benefits to AI, or is it
just a dangerous novelty? As the technology matures and our ability to
employ these technologies in more areas increases, we will find benefits
we are not yet able to imagine. This is the nature of discovery. When the
personal computer was invented, no one could have predicted all the
different use cases and solutions they represent today. As an exercise,
we will focus on two specific areas of AI research when discussing its
benefits, but note that we are just scratching the surface of what AI can
do, and its benefits will only increase with time. Our areas of focus are
autonomy and health care. By autonomy, I mean systems that operate
without human intervention and perform tasks on behalf of a human.
Examples include robots operating in warehouse environments and
self-driving cars. The health care sector is broad (and expanding), and
the potential for AI interventions is high.
 Self-driving cars are already operating to some extent on our
highways. For the most part, these cars are not yet entirely autonomous,
and they require human supervision and intervention to prevent
accidents. There are companies like Waymo, which operates an urban
fleet of entirely self-driven taxies. In some cities where they have been
running for years, mapping different routes, the cars don’t even include

CONCLUSION:
FROM CHAT ROOMS

TO CHATBOTS

220 Is tHE ALGorItHM PLottInG AGAInst us?

a safety driver (a human driver used as a last resort to avoid an accident).
There are also companies that are employing smaller self-driven vehicles
for food delivery. These operate in urban cores, along predefined
routes and amid more controlled environments. When we think of
self-driving cars, however, we usually think of our own cars taking us
to different places, different cities, different countries, all without our
having to touch a steering wheel. Companies like Tesla believe they are
close to making this happen. Other people in the industry are more
skeptical and believe the technology is still not good enough to achieve
full autonomy for at least a decade. Whichever side you take, one thing
is true: self-driving cars are coming; it’s just a matter of when. We then
must ask the question: Is this a good thing?
 Let’s be honest, when we drive down a busy highway on any
given day, and we see how some people drive—either at a snail’s pace,
clogging the lanes, or too fast, weaving in and out of traffic—it’s
difficult to argue that, in principle, this finesse is hard to automate.
I think that, in the future, when all cars are self-driven and the roads
and infrastructure are in place for car-to-car and car-to-infrastructure
communication, traveling by car will be much safer than it is today. We
will no longer have to worry about impaired driving. When cars can
communicate their moves to other cars in their vicinity, the flow will
be much smoother, and traffic jams should be less common. Think of
our reaction times versus the reaction times of machines. Most driving
manuals suggest we should drive at least two seconds behind the car in
front of us. The reason is that two seconds should give us enough time
to react to a sudden move by the car in front. Computers can react
much more quickly than that; therefore, self-driving cars should be
able to close that gap safely so that, even on crowded highways, traffic
should flow less impeded than it does today.
 Think of what it means for a car to no longer require a human
driver. Visually impaired people will have more freedom to move
around and run errands without requiring assistance or hiring taxis.

 FroM CHAt rooMs to CHAtBots 221

Single parents who struggle with balancing work and picking their
kids up from school will be able to have their cars take them to and
from school—all without a driver inside. The question is whether all
of this can be done safely. There is a whole industry grappling with
this question right now. I think the answer is that for self-driving cars
to become the standard mode of transportation, they don’t have to be
perfect; they simply have to be safer than human drivers are today, and
I think that’s certainly possible.
 Clearly, none of this is easy. And there truly is a whole industry
today discussing and defining the safety measures that will create the
self-driven cars and necessary infrastructure of tomorrow. Some of
these discussions involve insurance: Who is responsible for an accident
when there is no human driver? Some are around ethics: How does
a car decide between crashing into another car with people in it or
veering into a median in a solo collision? These are all important
questions, and they are well beyond the scope of our book. Our goal
here is to understand, as it relates to AI and assuming that all ancillary
questions are answered and resolved, why it is that self-driving cars
should be automatable and a good use case of AI whereas the judicial
process is not. To me, the test for whether AI is a good fit to solve a
human-related problem is if it doesn’t aim to influence our behavior (as
in the case of advertising and recommender systems) and if there is a
fundamental set of rules to solve the problem.
 In the case of criminal courts, what happens to suspects, how they
should be judged, how long they should be in prison, and the severity
of the sentence are more nuanced considerations than a strict set of
rules. These are decisions that require compassion, and they require a
judge to sometimes err on the side of hope to end the cycle of violence
and transgressions that got the suspect into court in the first place.
Sure, this process leaves gaps for terrible people to take advantage of
the system, but remember that we have already accepted this as the
price for our freedom. This is the very principle of our court systems,

222 Is tHE ALGorItHM PLottInG AGAInst us?

that it is better for a guilty person to walk free than to send an innocent
person to prison.
 So why is self-driving different? The problem of self-driving is
fundamentally a perception and reaction problem. If we look at the
basics of driving, a set of overarching questions emerges: Is there an
obstacle in front of me, and if so, how do I react to it? Do I stop,
or do I avoid it? To make those decisions, the cars have an array of
sensors and algorithms that interpret the input from those sensors
and correct the car’s position and speed accordingly. As long as the
goal of the algorithms remains, ultimately, to avoid a collision (as is
the primary goal for humans), I believe AI will eventually be capable
of outperforming human drivers. The problem we need to avoid is
asking too much from an AI system—for example, expecting it to not
only avoid a collision but also, considering that a collision is about to
happen, to choose the best outcome for a collision. This is where things
could turn bad quickly.
 It’s hard to define what “best” means, and “best” for an algorithm
might be different from “best” for the passengers inside the vehicle
or for those outside. Consider the hypothetical case of a self-driving
AI trained on a data set of collisions and outcomes with the goal of
learning to choose the best outcome given that a collision is imminent.
Most modern cars are generally safe and are comparably adept at
keeping passengers safe during a collision, so let’s assume that in this
data set the most salient consequence of a collision is insurance cost. In
an imminent collision when the AI’s choice is between crashing into a
luxurious car versus an older one, the AI might choose to crash into the
older one to minimize the financial cost of the collision. Clearly, this
leads down the wrong path of an ethics argument.
 What should the car do instead if it knows that whatever it chooses,
it’s going to crash into something? I don’t think I have the answers, and
these unresolved questions are part of the reason we don’t have fully
autonomous cars yet. For the purposes of our discussion, let’s say that

 FroM CHAt rooMs to CHAtBots 223

an answer could be to reduce speed and crash into the object in front
at a slower speed. Is this always a good solution? Probably not. But at
least it’s deterministic, and it avoids the problem of the AI choosing
the cost of a collision by putting a price on people. Indeed, an AI
that is capable of driving better than a human is a difficult problem to
solve, but I think it’s possible because, when we consider how we drive,
fundamentally we are following a set of rules. We are primarily trying
to avoid objects, and in most cases, when we get into a collision, we
hit an obstacle while trying to avoid other obstacles; in general, we are
not making ethical or financial choices for what’s best to crash into. I
suspect that it is possible to design an algorithm that, while not perfect,
can learn enough rules to avoid more collisions than humans do and
can opt to protect its own passengers when it gets into a collision,
instead of weighing which other people it is best to crash into.
 AI algorithms are currently being deployed in another important
domain where their applicability will only increase in the future:
health care. One of the biggest bottlenecks in many health care
systems around the world is in diagnosing diseases. AI systems like
the convolutional neural networks we discussed in chapter 2 can be
used to analyze images of disease and grade the severity of the disease
in patients. Much of the current work is still in the research stage,
but many use cases already abound. For example, technicians can use
neural networks to classify chest X-rays and distinguish between scans
showing signs of pneumonia and scans showing healthy lungs. Also,
engineers have trained neural networks to analyze images of potentially
cancerous biopsied tissue, including classifying and detecting varying
grades of melanoma (skin cancer), prostate cancer, bladder cancer, and
many other types of cancers.
 The networks are trained with data sets of images labeled by
expert pathologists as exhibiting certain grades of cancer. During the
training phase, the system learns to pick up on the features of the
images that might indicate different severities of cancer. For now,

224 Is tHE ALGorItHM PLottInG AGAInst us?

most of this work is being conducted in research labs, but the hope is
that eventually automation systems could be deployed to help ease the
burden of diagnosis on medical experts. It’s well known that the best
chances of surviving cancer depend on our ability to find it early. This
means that the quicker an expert can analyze a test from a patient, the
sooner the patient can get the help they need. Unfortunately, experts
aren’t always available when they are needed, and the ones who are
available are stretched thin and overburdened with a long line of
waiting patients. We are not there yet, but these automated systems
should help greatly augment the diagnostic power of hospitals and
labs around the world.
 A subfield within the health care domain that looks to benefit
greatly from the application of artificial intelligence to its research is in
the development of pharmaceuticals. Alphabet, the company that owns
Google, recently spun off a brand-new company called Isomorphic Labs,
dedicated to helping find treatments for diseases related to proteins and
their shapes. It turns out that many terrible degenerative diseases—like
Alzheimer’s, Parkinson’s, and Huntington’s—are suspected to be related
to misfolded proteins. Proteins are made up of long chains of amino
acid molecules. Ribosomes, which are molecular machines found in all
living cells, fold protein strands into specific 3D shapes. These shapes
are responsible for much of the protein’s functioning. Sometimes, the
folding process breaks down, and the protein is folded into a shape
that affects the expected function of the protein, resulting in what is
known as protein misfold. Understanding the shape into which proteins
are folded in 3D space is vital to designing drugs to treat the effects
of misfolded proteins. DeepMind, an AI research group at Google,
created an algorithm named AlphaFold that is trained to predict the
shapes of proteins. In the relatively short time this algorithm has been
training, it has reportedly outperformed the speed and capabilities of
human research teams in predicting protein shapes. Isomorphic Labs
was created to further expand on the research that produced AlphaFold

 FroM CHAt rooMs to CHAtBots 225

and to eventually work with pharmaceutical companies to produce
drugs that can treat such diseases.
 These different health care scenarios are great examples of uses
cases where in principle AI algorithms should benefit us. Why? Because
diseases and their diagnoses typically follow a set of rules. For example,
depending on certain characteristics of a group of cells in a biopsy
slide, the shape of the cells, and the number of cells in a given region,
as well as sudden unexpected blood vessels feeding these cell regions,
a pathologist might determine that the tissue shows signs of cancer.
The rules are complicated, and humans don’t know all the rules in
most cases; this is why the process of diagnosing a patient is complex
and requires experts. And it’s not 100 percent accurate—in fact, for
some cancers, the accepted detection accuracy for human pathologists
is around 75 percent.
 This is also why we need neural networks to discover the rules for
diagnosing diseases. Even an expert pathologist whose job is to detect
these diseases will produce diagnoses that often differ from other experts’
assessments. Because the rules for diagnosing a disease are complex and
not well defined, pathologists learn them through experience and by
developing what might be called an “instinct” for it. If the rules were
well understood and well defined, we wouldn’t need artificial neural
networks to discover the rules. We could create a classic decision tree,
which could check a list of features and, depending on which features
are “ticked,” could decide whether the disease is present. But this is not
the case. Instead, we need to discover the rules through the learning
process of artificial neural networks. Although the rules are complex
and we have not yet discovered all of them to systematically diagnose
every disease, it should be possible to discover them.
 Determining whether a patient has a disease should not be, at its
core, subjective and nuanced. It must be a matter of learning to detect
the signs of the disease. This is why artificial intelligence algorithms are
in principle a good fit. The process should not require the algorithm

226 Is tHE ALGorItHM PLottInG AGAInst us?

to make ethical or compassionate decisions. The process simply trains
the algorithm to learn to identify features that predict a certain disease.
Of course, researchers cannot be careless about the data or the process
we use to train these algorithms. Researchers must indeed be careful
that biases are not introduced in the training process, and they must
be extremely careful to not draw broadly optimistic conclusions
about preliminary results, which might lead to prematurely deploying
systems that don’t generalize well over an entire population. This could
endanger the larger population by providing incorrect diagnoses and
further erode the public’s trust in these systems. But nevertheless, in
principle, diagnosing a disease in a patient should be automatable
because it is not a subjective problem.

We are just beginning to understand and cultivate the potential
benefits for AI in health care. Automated disease diagnosis, discovery
of new drugs, biomedical implants meant to monitor specific body
functions—all are areas where AI research has the potential to change
our lives for the better. Elon Musk has started a new company called
Neuralink, which is researching methods for implantable brain-machine
interfaces that, combined with prosthetics, could help disabled people
gain lost functionality. Some researchers hope that brain implants
will one day help cure specific types of blindness caused by damaged
regions of the brain. These examples should give us hope and make us
optimistic about the future of AI. AI can benefit us, and it can harm us;
it’s all about how we choose to use it.

Earlier, I said that self-driving cars and robots that work in
warehouses stocking and dispatching items are examples of autonomous
AI systems. I went ahead and explained self-driving cars but did not
elaborate on robots in warehouses. Companies today are already
employing robots tasked with filling skids with boxes, moving the skids
to stock shelves, and retrieving skids from the shelves to different loading
areas for dispatching. These robots exemplify AI systems that operate
well autonomously, without human interaction. They can identify the

 FroM CHAt rooMs to CHAtBots 227

objects they are tasked with handling. They physically move the objects
from location to location, and they can avoid obstacles in their path.

Some see these robots as a positive example of machines performing
what are among the most dangerous jobs in warehouses and removing
humans from areas of frequent accidents. Robots don’t need weekends off
or vacation or sick leave, and they do not require sleep. So from the point
of view of the company owner, they are better at scaling production. A
clear benefit of this is an expanding economy. It is also important to
note, however, that automation leads to displacing humans from jobs
they need, which many fear will add to an eventually catastrophic mass
unemployment. Whenever new transformational technologies arise,
especially technologies capable of automating tasks traditionally done
by humans, job losses will inevitably follow. I do not know whether
the current path of AI and automation will lead to catastrophic mass
unemployment. Some jobs will certainly disappear, but I suspect that
new ones will be created to support new industries. When we look at the
history of civilization, there have been many periods of invention and
automation and job displacement, but new industries have sprung up
to provide new job sectors as well. What will likely happen is that jobs
will continue to become more and more sophisticated, requiring higher
education. The sector of the population caught in the change will lose
their jobs, but they should not be left by the wayside.

Such shifts, and especially their consequences, are no longer a
problem of AI or technology; they are a matter of government policy. It
would be quite unfortunate were we to start advocating for the constraint
of technological advances simply because we can’t take care of the
population affected by the shifting job market. Some thought leaders in
these areas suggest universal basic income as a possible solution to the
job losses created by automation. I do not know whether this is a good
solution; what I know is that a good and healthy society should aim to
take care of those in need. How we provide help to people displaced by
automation—whether it is by offering a type of universal basic income

228 Is tHE ALGorItHM PLottInG AGAInst us?

or retraining opportunities in emerging industries or a combination of
those possible solutions—will be determined by government policy.
When it comes to policy, we ultimately make the decisions.

In the 1970s and 1980s, only a select few technologists were familiar with
computers and their capabilities. Today, most people understand what a
computer is and what it can do. Of course, an expert will still know more
than the average person, but a conversation about a software application
no longer must begin by explaining what a computer is. Similarly, we can
discuss the internet as a great tool for staying connected with friends and
family, as a tool for learning about the world and different cultures. The
internet, however, also presents dangers.

When we discuss these qualities, the good and the bad of the
internet, we can move straight to the problem without the need to
begin with an explanation of what the technology is. We may suppose
that when the internet was in its infancy in the early 1990s, a few
tech visionaries could have predicted a future where the internet
would be central to our lives—a future where we would work, hang
out, seek refuge and entertainment, and indeed live on the internet.
But discussions addressing the advantages and disadvantages of such a
future would have been difficult at that time.

If you are old enough, you may recall that during the nineties chat
rooms became a sensation. You could type a message, and a stranger
halfway around the world would reply instantly! As a kid, I spent hours
in these chat rooms. In those days, many people—including most of our
parents—did not understand what a chat room was. Most people still
didn’t really understand what you could do with a single computer, let
alone what you could do with a network of interconnected computers
all over the world. It took nearly three decades to get to any meaningful
conversation about the internet—discussions that we have only recently
begun concerning child safety, privacy, online identity, security, and so

 FroM CHAt rooMs to CHAtBots 229

on. We have had to wait for internet (and computer) literacy to reach a
point where we no longer must explain what the technology is so that
we can discuss how it is affecting us.

When it comes to artificial intelligence, the conversation has not
yet matured to this level. We may have digital assistants all over our
houses, replying to our endless queries, but we don’t yet understand
how such systems work, what information they are collecting, or how
they might use that information in ways that can affect our lives. Our
kids are having conversations with these digital assistants—getting
them to tell jokes, asking questions about animals, and requesting
videos on YouTube. We may find this as amusing as the chat rooms of
the nineties. But this time, we shouldn’t wait three decades to discuss
the responsible use of this new type of technology.

The hope is that—with this book and others like it—the public
will gain enough understanding of what artificial intelligence is and its
basic capabilities to appreciate its formidability. With this knowledge,
we can tune into what is inevitably part of our shared future. We can
better position ourselves to stay informed about its developments. We
can understand how our behavior informs the behavior of AI systems.
And, as circumstances require, we can influence relevant policy.

I hope you have enjoyed this book, and I hope it has inspired you
to further expand your understanding of artificial intelligence. We have
only scratched the surface.

ACKNOWLEDGMENTS

The pages in this book were written in the early mornings of 2021 and
2022, before anyone in the house was awake. Sometimes, on weekends,
those mornings would stretch into the late afternoon as I struggled
to explain one concept or another. Little footsteps making their way
up the stairs and into my office would interrupt my concentration.
“Daddy, are you done work?” I would hear from my three-year-old
daughter. Well, now I can say, yes, I am done, and thank you for being
so wonderfully patient.

It is impossible to write a book, or produce anything, without
having relied on others for help at some point. This work would not
have been possible without the support of my wife, Maritza Marin,
who encouraged me to try things I knew were too difficult when I
was convinced I had no time to do them; thank you. Much is owed
to Evan and Ellis Wenger, my wonderful and understanding children,
who young as they are nevertheless sat beside me on many occasions,
waiting in the agony of boredom as deep as only children can know
but waiting still, until I finished a chapter or a paragraph, so we could
go and play. My parents, Isaac Wenger and Barbara Luis, gambled their
future to give me a better one. Thank you for your encouragement and
for teaching me how to think.

This book benefited from the expertise of Ara Vartanian and
Saumil Patel, who provided technical feedback that helped improve
the readability and accuracy of the book in many ways. Thank you
both for your contributions.

Two people at Working Fires Foundation carefully guided me
through the entire publishing process. I know this book would have
been deficient and less engaging without the expert touch of my editor,
Matthew Perez, who painstakingly read and reread every single line,
offering advice and adjusting the many mistakes I produced. This book
is much better thanks to you. Any issues that remain can only be my
fault. At the same time, Andrés Cruciani’s contributions, help, and
support made the publication and launching of this book considerably
smoother and more enjoyable.

I have to express my gratitude to the many talented people
involved in the production process: Fayyaz Ahmed (cover design),
Wes Cowley and Marisa Crowley (proofreading), Joëlle O’Hanrahan
(special edition slipcase design), James Protano (original book design),
and Lisa Rivero (indexing).

To Damian Fozard and the entire CoreAVI team, thank you for
your support and encouragement. Damian, thanks for your belief and
for all the help you have given me in the production of this book, as
well as for your support over our last decade working together.

For contributions that in one form or another have made this
book possible, I must thank the following people: Amelia and Caridad
Alfonso, Rocio Brito, Frank David de Castro, Pedro Carlos de Castro,
Alex de la Cruz, Aidan Fabius, Dr. Farsad, Igor Krupin, Joe Liuzza and
family, Carlos Luis, Dr. Sadeghian, Greg Szober, Kayvan Tirdad, Steve
Viggers, and Dan Joncas.

This list ought to be much longer, and I am sure to have failed
to remember key persons who have made a mark along the way or
impressed upon me the need to write, and that I had some capacity to
do so. To anyone I’ve omitted, whose valuable contributions live in the
words set down here, I apologize and offer you my thanks.

And thank you again, dear reader, for reading.

232 ACKnoWLEDGMEnts

SOURCES

The following works have inspired my writing.

Pale Blue Dot: A Vision of the Human Future in Space (Random House, 1994).
Any scientist writing a popular science book owes a debt of gratitude
to Carl Sagan, whether they realize it or not. Sagan was an American
cosmologist and an incredible communicator, capable of explaining the
most complex subjects in clear and accessible terms. He was also among the
first scientists to advocate for informing the public of new developments
in science. At the time, many of his peers heavily criticized his appearances
on TV and his popular writings, as they considered a scientist’s place to
be the lab; according to them, anything else was a waste of time. Sagan
understood that you don’t have to be a scientist to appreciate science, and
his efforts inspired millions, including myself.

The Selfish Gene (Oxford University Press, 1976). This book made Richard
Dawkins one of the most important biologists of the twentieth century.
The Selfish Gene is a groundbreaking piece that takes Darwin’s theory
of evolution by natural selection to a deeper level and identifies the
fundamental actor driving evolution: the gene. Although it is purely a
book about biology, I know it influenced my own writing.

The Organization of Behavior: A Neuropsychological Theory (John Wiley
& Sons, 1949). Donald Hebb’s seminal book on neural information
processing was instrumental in developing the field of AI, and it directly
informed the writing in this book by providing important background
information and perspective on the development of neural networks, both
biological and artificial.

234 sourCEs

Sapiens: A Brief History of Humankind (Harvill Secker / Signal, 2014) and
Homo Deus: A Brief History of Tomorrow (Harvill Secker, 2016). Yuval
Noah Harari’s books on the history and future of humanity as critiques of
our social responsibilities provided invaluable inspiration.

The many lectures, research papers, and journal articles of Geoffrey Hinton,
Yann LeCun, Andrew Ng, and Yoshua Bengio contributed important
elements to all themes discussed in this book.

Works whose influence can be found in specific chapters are
listed below.

Introduction: Living with Lions

Asher Hamilton, Isobel. “Elon Musk’s Neuralink Wants to Embed Microchips
in People’s Skulls and Get Robots to Perform Brain Surgery.” Impact Lab,
Aug. 4, 2021. https://www.impactlab.com/2021/08/04/elon-musks-
neuralink-wants-to-embed-microchips-in-peoples-skulls-and-get-robots-to-
perform-brain-surgery/.

Reuters. “Maasai Now Track Lions instead of Killing Them.” NBC News,
Oct. 15, 2009. https://www.nbcnews.com/id/wbna33240556.

Yasukawa, Olivia, and Thomas Page. “Lion-Killer Maasai Turn Wildlife
Warriors to Save Old Enemy.” CNN, Feb. 8, 2017. https://www.cnn.
com/2017/02/07/africa/maasai-tanzania-wildlife-warriors/index.html.

Polarization and Its Consequences

Amari, S., and M. A. Arbib, eds. Competition and Cooperation in Neural Nets:
Proceedings of the U.S.-Japan Joint Seminar Held at Kyoto, Japan February 15–
19, 1982. Lecture Notes in Biomathematics Series. Berlin: Springer, 1982.
https://doi.org/10.1007/978-3-642-46466-9.

 sourCEs 235

Burke, Robert E. “Sir Charles Sherrington’s The Integrative Action of the
Nervous System: A Centenary Appreciation.” Brain 130, no. 4 (Apr.
2007): 887–94. https://doi.org/10.1093/brain/awm022.

Computer History Museum. “The Engines.” The Babbage Engine. Accessed
May 2, 2022. https://www.computerhistory.org/babbage/engines/.

Deng, J., W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei. “ImageNet:
A Large-Scale Hierarchical Image Database.” In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 248–55. Washington,
DC: IEEE Computer Society, 2009. https://doi.org/10.1109/
CVPR.2009.5206848.

Gardner, Martin. “Mathematical Games: The Fantastic Combinations of
John Conway’s New Solitaire Game ‘Life.’” Scientific American 223
(October 1970): 120–23. https://www.scientificamerican.com/magazine/
sa/1970/10-01/.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks.”
Communications of the ACM 60, no. 6 (June 2017): 84–90. https://doi.
org/10.1145/3065386. Originally published in the proceedings of the 2012
Conference and Workshop on Neural Information Processing Systems,
Advances in Neural Information Processing Systems 25 (NIPS 2012), edited by
F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger.

Large Movie Review Dataset. Accessed May 2, 2022. https://ai.stanford.
edu/~amaas/data/sentiment/.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. “Backpropagation Applied to Handwritten
Zip Code Recognition.” Paper for AT&T Bell Laboratories, Holmdel,
NJ, Sept. 1989. http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf.

McCulloch, Warren, and Walter Pitts. “A Logical Calculus of Ideas
Immanent in Nervous Activity.” Bulletin of Mathematical Biophysics 5
(1943): 127–47. https://doi.org/10.1007/BF02478259.

236 sourCEs

Minsky, Marvin, and Seymour A. Papert. Perceptrons: An Introduction to
Computational Geometry. Exp. ed. Cambridge, MA: MIT Press, 1987.

Ramón y Cajal, Santiago. Texture of the Nervous System of Man and the
Vertebrates. Vol. 1. Translated and edited by Pedro Pasik and Tauba Pasik.
Vienna: Springer, 1999.

Roberts, Eric. “History: The 1940’s to the 1970’s.” Neural Networks
(website). Accessed May 2, 2022. https://cs.stanford.edu/people/
eroberts/courses/soco/projects/neural-networks/History/history1.html.

———. “History: The 1980’s to the Present.” Neural Networks (website).
Accessed May 2, 2022. https://cs.stanford.edu/people/eroberts/courses/
soco/projects/neural-networks/index.html.

Roberts, Siobhan. “The Lasting Lessons of John Conway’s Game of Life.”
New York Times, Dec. 28, 2020. https://www.nytimes.com/2020/12/28/
science/math-conway-game-of-life.html.

Sherrington, Charles Scott. The Integrative Action of the Nervous System. New
Haven, CT: Yale University Press, 1906.

Swaine, M. R., and Paul A. Freiberger. “Analytical Engine.” Encyclopedia
Britannica, May 26, 2020. https://www.britannica.com/technology/
Analytical-Engine.

Hello, Panda!

Elsayed, Gamaleldin, Shreya Shankar, Brian Cheung, Nicolas Papernot,
Alex Kurakin, Ian Goodfellow, and Jascha Sohl-Dickstein. “Adversarial
Examples that Fool both Computer Vision and Time-Limited Humans.”
arXiv.org, May 22, 2018. https://arxiv.org/abs/1802.08195.

Great Learning Team and Avinash Thite. “Introduction to VGG16: What Is
VGG16?” Great Learning, Oct. 1, 2021. https://www.mygreatlearning.
com/blog/introduction-to-vgg16/.

 sourCEs 237

Harvard University. “A Nobel Partnership: Hubel & Wiesel.” Harvard Brain
Tour. Accessed May 2, 2022. https://braintour.harvard.edu/archives/
portfolio-items/hubel-and-wiesel.

Hubel, David H., and Torsten N. Wiesel. “Early Exploration of the Visual
Cortex.” Neuron 20 (March 1998): 401–12. https://doi.org/10.1016/
S0896-6273(00)80984-8.

Katz, Bernard. “Stephen William Kuffler, 24 August 1913–11 October
1980.” Biographical Memoirs of Fellows of the Royal Society 28 (Nov.
1982): 225–59. https://doi.org/10.1098/rsbm.1982.0011.

Lian, Yanbo, Ali Almasi, David B. Grayden, Tatiana Kameneva, Anthony
N. Burkitt, and Hamish Meffin. “Learning Receptive Field Properties
of Complex Cells in V1.” PLOS Computational Biology, Mar. 2, 2021.
https://doi.org/10.1371/journal.pcbi.1007957.

Nutan. “Deep Convolutional Networks VGG16 for Image Recognition
in Keras.” Medium, Aug. 28, 2020. https://medium.com/@
nutanbhogendrasharma/deep-convolutional-networks-vgg16-for-image-
recognition-in-keras-a4beb59f80a7.

Simonyan, Karen, and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition.” arXiv.org, Apr. 10, 2015.
https://arxiv.org/abs/1409.1556.

University of Bonn. “‘Math Neurons’ Identified in the Brain: When
Performing Calculations, Some Neurons Are Active when Adding,
Others when Subtracting.” ScienceDaily, Feb. 14, 2022. https://www.
sciencedaily.com/releases/2022/02/220214121241.htm.

University of Oxford. Visual Geometry Group (homepage). Accessed May
2, 2022. https://www.robots.ox.ac.uk/~vgg/.

238 sourCEs

Answering an Age-Old Question

Asimov, Isaac. “Runaround.” In I, Robot, 25–45. New York: Bantam, 1991.

Bryson, Arthur E., Jr., and Yu-Chi Ho. Applied Optimal Control:
Optimization, Estimation, and Control. New York: Taylor & Francis, 1975.

Hintze, Arend. “What an Artificial Intelligence Researcher Fears about AI.”
Scientific American, July 14, 2017. https://www.scientificamerican.com/
article/what-an-artificial-intelligence-researcher-fears-about-ai/.

LeCun, Y. “A Theoretical Framework for Back-Propagation.” In Proceedings
of the 1988 Connectionist Models Summer School, edited by D. Touretzky,
G. Hinton, and T. Sejnowski, 21–28. Pittsburgh: Carnegie Mellon
University, 1988. http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf.

Piper, Kelsey. “Why Elon Musk Fears Artificial Intelligence.” Vox, Nov. 2,
2018. https://www.vox.com/future-perfect/2018/11/2/18053418/elon-
musk-artificial-intelligence-google-deepmind-openai.

Russell, Stuart, and Peter Norvig, eds. Artificial Intelligence: A Modern
Approach. 4th ed. Hoboken, NJ: Pearson, 2021.

Shead, Sam. “Elon Musk Says DeepMind Is His ‘Top Concern’
when It Comes to A.I.” CNBC, July 29, 2020. https://www.cnbc.
com/2020/07/29/elon-musk-deepmind-ai.html.

Intelligent Discourse

Agence-France Presse in Shanghai. “World’s Best Go Player Flummoxed by
Google’s ‘Godlike’ AlphaGo AI.” The Guardian, May 23, 2017. https://
www.theguardian.com/technology/2017/may/23/alphago-google-ai-
beats-ke-jie-china-go.

“AlphaGo—the Movie: Full Award-Winning Documentary.” YouTube video
posted by DeepMind on Mar. 13, 2020, 1:30:27. https://www.youtube.
com/watch?v=WXuK6gekU1Y.

 sourCEs 239

Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner. “Courtroom
Equations Wrongly Flagging Blacks as Future Criminals.” Tampa Bay
Times, May 23, 2016. https://www.tampabay.com/news/publicsafety/
crime/courtroom-equations-wrongly-flagging-blacks-as-future-
criminals/2278656/.

BBC. “Google AI Defeats Human Go Champion.” BBC News, May 25,
2017. https://www.bbc.com/news/technology-40042581.

Bostrom, Nick. “The Superintelligent Will: Motivation and Instrumental
Rationality in Advanced Artificial Agents.” Minds and Machines 22, no.
(May 2012): 71–85. https://doi.org/10.1007/s11023-012-9281-3.

Cummings, M. L. “Automation Bias in Intelligent Time Critical Decision
Support Systems.” AIAA Meeting Paper, AIAA 1st Intelligent Systems
Technical Conference, Sept. 20–22, 2004, Chicago. https://doi.
org/10.2514/6.2004-6313.

Dressel, Julia, and Hany Farid. “The Accuracy, Fairness, and Limits of
Predicting Recidivism.” Science Advances 4, no. 1 (Jan. 2018). https://
doi.org/10.1126/sciadv.aao5580.

Gorner, Jeremy. “Chicago Police Use ‘Heat List’ as Strategy to Prevent
Violence.” Chicago Tribune, Aug. 21, 2013. https://www.chicagotribune.
com/news/ct-xpm-2013-08-21-ct-met-heat-list-20130821-story.html.

Lin, Zhiyuan “Jerry,” Jongbin Jung, Sharad Goel, and Jennifer Skeem. “The
Limits of Human Predictions of Recidivism.” Science Advances 6, no. 7
(Feb. 2020). https://doi.org/10.1126/sciadv.aaz0652.

Russell, Stuart. Human Compatible: Artificial Intelligence and the Problem of
Control. Repr. ed. New York: Penguin Books, 2020.

240 sourCEs

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. “Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm.” arXiv.org, Dec. 5, 2017.
https://arxiv.org/abs/1712.01815.

Silver, David, Thomas Hubert, Julian Schrittwieser, and Demis Hassabis.
“AlphaZero: Shedding New Light on Chess, Shogi, and Go.” DeepMind,
Dec. 6, 2018. https://www.deepmind.com/blog/alphazero-shedding-
new-light-on-chess-shogi-and-go.

Simonite, Tom. “Algorithms Were Supposed to Fix the Bail System.
They Haven’t.” Wired, Feb. 19, 2020. https://www.wired.com/story/
algorithms-supposed-fix-bail-system-they-havent/.

Stroud, Matt. “Heat Listed.” The Verge, May 24, 2021. https://www.theverge.
com/c/22444020/chicago-pd-predictive-policing-heat-list.

U.S. Department of Health and Human Services. “Heart Disease
and African Americans.” Office of Minority Health, last modified
Jan. 1, 2022. https://minorityhealth.hhs.gov/omh/browse.
aspx?lvl=4&lvlid=19#:~:text=In%202018%2C%20African%20
Americans%20were,their%20blood%20pressure%20under%20control.

Yudkowsky, Eliezer. “MIRI Announces New ‘Death with Dignity’
Strategy.” LessWrong, Apr. 1, 2022. https://www.lesswrong.com/posts/
j9Q8bRmwCgXRYAgcJ/miri-announces-new-death-with-dignity-
strategy.

Yudkowsky, Eliezer, Anna Salamon, Carl Shulman, Steven Kaas, Tom
McCabe, and Rolf Nelson. Reducing Long-Term Catastrophic Risks from
Artificial Intelligence. San Francisco: Singularity Institute, 2010. https://
intelligence.org/files/ReducingRisks.pdf.

Završnik, Aleš. “Criminal Justice, Artificial Intelligence Systems, and
Human Rights.” ERA Forum 20 (2020): 567–83. https://doi.
org/10.1007/s12027-020-00602-0.

 sourCEs 241

From Chat Rooms to Chatbots

Bonifacic, I. “Alphabet’s Isomorphic Labs Is a New Company Focused on
AI-Driven Drug Discovery.” Engadget, Nov. 4, 2021. https://www.
engadget.com/alphabet-isomorphic-labs-announcement-193546886.
html.

Coldewey, Devin. “Isomorphic Labs Is Alphabet’s Play in AI Drug
Discovery.” Tech Crunch, Nov. 4, 2021. https://techcrunch.
com/2021/11/04/isomorphic-labs-is-alphabets-play-in-ai-drug-discovery.

accuracy, definition of, 202–3
accuracy problem, 202–6
activation functions, 29; purpose of,

42; rectified linear unit (ReLu)
activation function, 42, 43–47, 54–
55, 60, 66, 95; sigmoid activation
function, 29, 42, 48, 55–56, 60;
threshold activation function, 27,
29, 33

ADALINE and MADALINE, 35, 72
adversarial images, 118
advertising industry, 206–11
agricultural revolution, 177–78
AI. See artificial intelligence
Alexa (voice assistant), 1, 3, 10, 50, 176
AlexNet, 40
alignment problem, 4–5, 214–18
Alphabet, 224. See also Google
Amazon, 1, 3, 10, 50, 176
Apple, 1, 10, 176, 209
architecture, neural network, 8–9,

54–55, 121; VGG-16 architecture,
90–92, 91, 92, 95, 97–98, 100. See
also convolutional neural network
(CNN)

artificial general intelligence (AGI), 182,
215–18

artificial intelligence (AI): AI Winter,
37; artificial neural networks and,
3–4; definition of and use of the
term, 3, 180–82; distrust and
fear of, 4–6, 123–24; popular
understandings of, 1–2; purpose
of, 128. See also artificial neural
networks

artificial neural networks: advertising
industry and, 206–11; classification
use-case examples, 49–61;
definition of, 3; function of, 41–49;
as funnel of information, 125;
hidden layers, 41–42, 54–56,
66; regression use-case examples,
61–67; simple model, 13. See
also architecture, neural network;
artificial neural networks, history of

artificial neural networks, history of, 11–
13; ADALINE and MADALINE,
35, 72; biological neurons and,
13–21; computer industry and,
38–40; gaming industry and, 39;

INDEX
Page numbers in italics refer to figures and tables.

244 InDEX

logic gates, 21–27; Rosenblatt
perceptron, 29–35, 72; weights and
real numbers, 29–32

Asimov, Isaac, 123–24

Bernoulli distribution, 128, 139–40,
170, 172–74

best-fit line, 64; definition of, 142;
linear regression and, 64, 64,
145–46, 153, 157, 159–61; logistic
regression and, 163, 163, 164, 169;
scatter plots with, 142

bias: in data sets and algorithms, 73–76,
83, 84, 108, 122; in weighted sum
operation, 33, 33n6

binomial distribution, 128, 135–36,
137–39

biological neural networks, 21–22;
See also information processing,
biological; neurons; vision systems,
biological

Black Mirror (Netflix series), 1
Boston Dynamics, 2
Boston Housing Price data set, 65–67,

65, 73–76, 191
Bostrom, Nick, 216

Cajal, Santiago Ramón y. See Ramón y
Cajal, Santiago

calculus, 67, 105, 124, 150–57
cat-recognition example, 79–83, 84–86,

97, 106–8
central limit theorem, 140, 160
central processing units (CPUs), 27,

38–39
chatbots, 190–91

chat rooms, 228–29
chess, 101, 182, 184–86
classification use-case examples, 49–61;

definition of, 49–50; handwritten
digits example, 59–61; movie-
reviews example, 49–59; natural
language processing and, 50;
sentiment analysis, 52–54, 57–59,
61, 63

class invariance problem, 81, 83
coin-flipping experiments, 132–38, 135,

170
computer vision, 61, 77–78; bottom-

up approach to, 84–89; cat-
recognition example, 79–83, 84–
86, 96–97; convolutional neural
networks and, 89–97; Game of Life
and, 116–17; sorting facility use-
case example, 97–100; top-down
approach to, 81–83. See also edge
detection

consciousness: AI without, 10, 109,
182, 216; defining, 6, 217; in
Terminator, 6; theory of, 4, 213–14

convolutional neural network (CNN),
40, 72, 77, 78–79, 89; definition
of, 109; filtering process, 95; latent
representation (latent vector), 96–
97; MaxPool operation, 92–94, 93;
sorting facility use-case example,
97–100; training process, 100–105

convolutions (filtering operations),
85–86, 89–93, 94–96

Conway, John Horton, 116
correlation operations, 85n9. See also

convolutions

 InDEX 245

CPUs, 27, 38–39
creativity, 182. See also innovation

data compression, 111
deep learning, 3, 41, 73, 76, 157n16
DeepMind, 184, 224
distribution of features, 106–8, 117
distributions, definition of, 107

edge detection, 86–91, 95, 102, 113;
12 × 12 pixel image example, 88;
definition of, 86; Lady with an
Ermine (da Vinci) example, 86

emergent properties, definition of, 79
epoch, training, 59–60, 67, 148–49,

149n14, 150, 154
Ex Machina (film), 123

Facebook, 127
feature engineering, 82–84
feature maps, 91–96
filter (convolution kernel), 86–91, 95,

101
filtering, definition of, 100
filtering operations (convolutions),

85–86, 89–93, 95
filter matrix: 3 × 3 filter matrix, 89–95,

98–99, 105; in cat-recognition
example, 85; in convolutional
neural networks, 92–95, 98–99,
105; edge detection filter matrix,
86–88, 86, 88; Gaussian blur filter
matrix, 86, 87–88, 88

Game of Life, 116–17
Gaussian distribution, 128, 138,

157–61

Gaussian filter, 86, 87
genotypic models, 30–31
Gerlach, Joseph, 15
Golgi, Camillo, 14–15, 16; Nobel Prize

awarded to, 16; reazione nera (black
reaction), 14

Google: AlphaZero algorithm, 184–86;
data collection, 127; DeepMind,
184, 224; Google Assistant, 3;
Google Home, 50

gradient descent, 156, 159–61, 167–70,
175; definition of, 105, 156;
through back propagation, 105,
122, 156, 157n16

graphics processing units (GPUs),
39–40, 179

health care: advantages of AI in, 11–12,
219, 223–26; computer vision and,
78; melanoma detection example,
121–22

Hebb, Donald, 27–28, 29, 42, 71–72
Hebbian learning, 28
height-distribution examples, 129–32,

129, 130, 137–38, 141, 158–59,
189

Hinton, Geoffrey E., 38, 40, 55
Hoff, Marcian, 35
Hopfield, John, 38
Hopfield Net, 38
Hubel, David, 112–15
hyperspace, 68, 71, 72, 108, 165–66

ImageNet, 38, 40, 98
Industrial Revolution, 177
information processing, biological, 28,

110–11, 122

246 InDEX

innovation, 64, 180–82
intelligence, definition of, 179–82
Isomorphic Labs, 224

judicial system use-case examples:
accuracy problem and, 202–6;
advantages of AI in, 221–22;
artificial intelligence in, 192–206;
recidivism prediction example,
202–5

Krizhevsky, Alex, 38, 40
Kuffler, Stephen, 111

labels, definition of, 50
Lacabra, Luis Simarro, 14
law of dynamic polarization, 16
LeCun, Yann, 40, 157n16
Li, Fei-Fei, 40
linear regression, 141–45; definition of,

64, 145–46; Gaussian distribution
and, 157–61; height of boys
example, 158–59; probability and,
157–61

logistic regression, 162–70; probability
and, 170–74

logic gates: definition of, 23; EU-traveler
example, 26–27, 26; exclusive
or (xor) logic gates, 36, 37; and
gates, 23, 23; not gates, 24, 24; or
gates, 25, 25; possible outputs, 37;
systems, 26–27

loss function, 104–5, 117–18, 125–26;
definition of, 104, 149; linear
regression algorithms and, 149–51,
153–55, 155–61; probability

distributions and, 155 –61, 166 –73;
training algorithm and, 166–73

Maasai people, 2–3
MaxPool operation, 93–94, 93
McCulloch, Warren, 21, 29; activation

function, 27. See also McCulloch-
Pitts neuron

McCulloch-Pitts neuron, 12, 21–23,
22, 27–28, 29–32, 72; activation
function, 27–28, 32; binary
approach of, 27, 29, 30; historical
significance of, 22, 73–74;
limitation of, 28; logic gates built
with, 26–27; perceptron and,
29–31

mini batch, 149n14
Minsky, Marvin, 36–37, 38
monotypic models, 30–31
multilayer perceptron (MLP), 12–13,

13, 38, 61; convolutional neural
networks and, 77, 90–92; model
of, 41–42, 41

Musk, Elon, 1, 124, 226. See also Tesla

natural language processing (NLP), 50,
94, 101

Neuralink, 1, 226
neural networks. See artificial neural

networks
neurons, 13–21
Nobel Prize and Nobel laureates:

Ramón y Cajal lecture, 16;
Golgi and Ramón y Cajal, 16;
Sherrington, 22

noise, 159–60, 169; definition of, 159

 InDEX 247

nonlinearity: activation functions
and, 42; in biological systems,
55; nonlinear function f in CNN
operations, 95, 100; nonlinear
problems, 38, 39

normalizing data, definition of, 52

object tracking, 88–89
one-hot encoding, 53–54

Papert, Seymour A., 36
pharmaceutical industry, 3–4, 224–25,

226
Pitts, Walter, 21, 29. See also

McCulloch-Pitts neuron
prediction: in classification use cases, 48;

definition of, 48–49
probability distribution, 125–26,

128–35; Bernoulli distribution,
128, 139–40, 170, 172; binomial
distribution, 128, 135, 136–39;
coin-flipping experiments, 132–38,
135, 170; discrete probability
distribution, 135; Gaussian
(normal) distribution, 128, 138,
157–61; height-distribution
examples, 129–32, 129, 130;
parameters of, 127–28, 132,
138–39; sampling, 138; statistical
models and, 128–35

problems, types of, 12; classification
problems, 12, 36–37; forecasting
problems, 12. See also classification
use-case examples

Ramón y Cajal, Santiago, 14–16, 22;
illustrations, 16, 17–20; law of
dynamic polarization, 16; Nobel
lecture, 16; Nobel Prize awarded to,
16; published work, 16

rectified linear unit (ReLu) activation
function, 42–43, 44–47, 54–55,
60, 66, 95

regression use-case examples, 60–67;
house-valuation example, 64–67;
project-estimation example, 62–64.
See also linear regression

reinforcement learning (RL) algorithms,
182–86

reticulum, 15, 16
revolutions, transformational, 177–79
Robotics, Three Laws of, 123–24
robots, 2, 4, 78, 98, 123–24, 181, 186,

213–14, 219, 226–27
Rosenblatt, Frank, 29–32, 34–36, 72
Rosenblatt perceptron, 30–36, 34, 72
Russell, Stuart, 214, 214n20

scatter plots, 142–45; with best-fit lines,
142; definition of, 143

self-driving vehicles: advantages of,
1, 220–21; AI used in, 3, 11;
challenges of, 221–22; computer
vision and, 78, 83; as example of
autonomous AI system, 219–22,
226; for food delivery, 220; taxies,
219–20; Tesla, 11, 220; Waymo,
219

sentiment analysis, 52–54, 57–59, 61,
63

248 InDEX

Sherrington, Charles Scott, 22
sigmoid activation function, 29, 42–43,

48, 55–56, 60
Siri (voice assistant), 1, 10, 176
statistical models, 128–32; challenges

for AI, 198–201; definition of, 128
statistics, 126–27, 139–41; bias in,

191–92; brain as statistical system,
31; significance for AI, 126–27. See
also probability distribution

supercomputers, 39–40
supervised learning algorithms, 182
Sutskever, Ilya, 38, 40

technological revolution, 10, 177–79
Terminator (film), 6, 123, 124
Tesla, 11, 220
Tetris, 183–85
threshold activation function, 27, 29, 33
tissue-staining techniques, 14–15
training algorithm and data sets:

advertising use cases, 211; bias
and, 76, 126, 194–96; calculus
used in, 155–61; classification
use cases, 51–53, 55, 57, 59–61;
convolutional neural networks,
104–5, 106; definition of, 51–53,
55, 57, 59–61; epochs, 60–61,
68, 152–53, 153n14, 155, 159;
judicial system use cases and, 203;
learned distribution and, 111–12;
linear regression and, 151–52, 154,
163–64; logical regression and,
167, 170; probability distribution
and, 130, 137; regression use cases,
68–69

Tyson, Neil deGrasse, 7n1

vector space, 68–70; hyperspace, 68, 71,
72; vectors in 2D and 3D space, 69

VGG-16 architecture, 90–92, 91, 92,
95–96, 97–98, 101

vision systems, biological, 109–20; color
blindness, 110, 118; color vision,
110, 118; complex cells, 113–15;
ganglion cells, 110–13, 115;
information processing, 110–11,
114; lateral geniculate nucleus
(LGN), 110, 111–12, 113, 114;
optical illusions, 118, 120; primary
visual cortex, 110, 111, 114, 115;
prosopagnosia, 114; retina, 15, 20,
84, 110–14, 113; secondary visual
cortex, 110, 114; visual cortex, 78,
110, 111–15, 113, 119

Visual Geometry Group. See VGG-16
architecture

voice assistants: Alexa, 1, 3, 10, 50, 176;
Google Assistant, 3; Siri, 1, 10, 176

Widrow, Bernard, 35
Wiesel, Torsten, 112–15

Yudkowsky, Eliezer, 215

ABOUT THE AUTHOR
Kenneth Wenger is senior director of research and innovation
at CoreAVI and chief technology officer at Squint AI. His work
focuses on the intersection of artificial intelligence and determinism,
enabling neural networks to execute in safety critical systems. Beyond
the research, his interests lie in people and how technology affects
society. He lives with his family in Mississauga, Ontario.

