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To my family



With regard to the question of whether we can make [machines] think 
like [human beings], my opinion is based on the following idea: that 
we try to make these things work as efficiently as we can with the 
materials that we have. Materials are different than nerves and so on. 
If we would like to make something that runs rapidly over the ground, 
then we could watch a cheetah running, and we could try to make a 
machine that runs like a cheetah. But it’s easier to make a machine 
with wheels, with fast wheels, or something that flies just above the 
ground in the air. When we make [an airplane], the airplane doesn’t fly 
like a bird. They fly, but they don’t fly like a bird. They don’t flap their 
wings exactly. They have in front another gadget that goes around, or 
the more modern airplane has a tube that you heat the air and squirt 
it out the back—jet propulsion. A jet engine has internal rotating fans 
and so on and uses gasoline. It’s different, right? So there’s no question 
that the later machines are not going to think like people think, in 
that sense. With regard to intelligence, I think it’s exactly the same 
way. For example, they’re not going to do arithmetic the same as we do 
arithmetic, but they’ll do it better.

—Richard Feynman, “Computers from the Inside Out” (1985)
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IS THE ALGORITHM  
PLOTTING AGAINST US?





Some days it feels like the whole world just can’t stop talking about 
artificial intelligence, or AI. Some of it seems good and exciting, 

like self-driving cars. We can already see cars maneuvering in certain 
situations with little human interaction; it won’t be long before the 
driving experience is all but automated. Some of it seems straight 
out of Star Trek or an Arthur C. Clarke novel. Neuralink, a company 
cofounded by Elon Musk, promises futuristic chips that can be inserted 
into your brain and interface with your neural connections, initially to 
help persons with disabilities gain lost functionality and eventually to 
serve as a much faster interface with our digital world. Imagine surfing 
the web (Does anyone still say “surfing the web”?) without needing 
a keyboard. Then, there are voice assistants like Amazon’s Alexa and 
Apple’s Siri that can understand our endless queries and respond in 
impressive ways. All these advances might have you wondering how any 
of this is possible. What is the source of knowledge in these machines, 
and how do they actually work?
 Darker and more ominous undercurrents, however, have also 
sparked interest in AI. If you haven’t watched the Netflix series Black 
Mirror, you should. It’s great, and it’s also a reminder—or maybe a 
warning—of what can happen when we lose control of our technology. 
Maybe you’re reading this book to find out exactly how terrified you 
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should be of AI. Maybe you’ve read news articles or seen Instagram 
videos about companies likes Boston Dynamics creating animallike 
robots that can maneuver in complex environments, perform such 
sophisticated tasks as opening doors, and communicate with other 
robots to achieve a common goal. Maybe you’ve thought, “Oh my 
God, it’s too late. We are all going to die!” 
 Whether your interest in AI is driven by hope and excitement or 
gloom and despair, you want to know if this book is for you and what 
you will get out of reading it. So let’s get right to it. 

The purpose of this book is, first and foremost, to explain how 
AI works at a level of detail that makes these algorithms accessible 
to a general audience. You do not need a technical background to 
understand this book; all that is required is a sense of curiosity and a 
willingness to consider complex subjects. After reading the book, you 
should have a good handle on the capabilities of state-of-the-art AI 
algorithms so that you can evaluate and gauge your response to this 
technology from an informed place.
 A lion in the wild can be dangerous to humans. But knowing 
where they live, when they hunt, and their physiological capabilities 
can help us modulate our response and behavior. If we find ourselves 
on a safari in the African savanna, we should be alert. If we see a lion, 
we might want to stay in our vehicles and keep enough distance so 
that we can drive away if the lion decides to chase. We can do this 
because we know how fast our vehicle can travel, and we know the 
speed of a lion. We also know that lions can run, but they can’t fly. This 
knowledge helps us gauge the level of readiness we ought to have in the 
African savanna. The Maasai of Tanzania and Kenya understand this 
better than anyone. They have coexisted with lions for millennia. They 
use knowledge developed over generations to keep themselves and their 
herds safe from lions. Once, long ago, they used their skills to track and 
successfully hunt lions in traditional rites of passage. Now, increasingly, 
they use those same tracking skills to protect and help preserve the 
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king of the jungle. The Maasai do not fear the lion; instead, they have 
learned to understand it.

On the other hand, if we find ourselves in the jungles of South 
America, we know that we need not fear lions—other predators, sure, 
but not lions, because there are no lions outside of Africa. In other 
words, understanding the lion’s capabilities, limitations, and domain 
helps us understand when we must worry about lions and when we 
can be certain that we are safe from them. That is the goal of this book 
(not to discuss lions—though we will come back to them in a later 
discussion!): to help us understand the capabilities, limitations, and 
domains of current AI technology. 
 First, we need to define what we mean by AI in this book. When 
we say “AI,” we are referring to a specific class of AI algorithms: artificial 
neural networks. Readers may have heard of deep learning used in 
conjunction with AI these days as well. This term often describes neural 
network models with multiple layers of artificial neurons. We come back 
to this relationship in chapter 1 and discuss the significance of each layer 
in a neural network model. It is important to note, however, that AI is 
a broad discipline in computer science; it spans many areas of research, 
and countless algorithms fall under this umbrella term. We are aware of 
the umbrage taken by purists—and those inclined to proper definitions, 
terminology, correctness, and so on—when we use the terms AI and 
neural networks interchangeably in this book, but the reality is that most 
people ignore this distinction often enough that those terms are regularly 
used interchangeably in informal contexts. Before proceeding, let’s make 
a promise to eternally remember that AI is a broad discipline, and neural 
networks are a class of algorithms belonging to that discipline. Having 
promised to remember the distinction, we can now do as we please. 
 Artificial neural networks are by far the most popular and 
successful AI algorithm in use today. They are currently the driving 
force behind advances in robotics, self-driving cars, Amazon’s Alexa, 
and Google Assistant. In the pharmaceutical industry, it is expected that 
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neural networks will make significant contributions to the discovery 
of molecules that can be synthesized to treat debilitating diseases like 
Parkinson’s, multiple sclerosis, and many others. At this point, it seems 
like there is no problem big enough or abstract enough that artificial 
neural networks cannot handle it. The corollary to this is that their 
unprecedented level of success has also garnered for them a certain 
level of distrust, or at least trepidation. If it can respond to me and 
understand my queries so well, what else can it do? What is it thinking?
 Popular beliefs, science fiction, and media sensationalism have 
conditioned us to distrust AI systems. That general distrust has taken 
on one most prominent and particular flavor: these machines will 
eventually become self-aware, wake from their eternal slumber, and 
kill us. The problem with such concerns is that they serve as a bit of a 
red herring. Regardless of whether we will eventually have to contend 
with self-aware machines, it’s certainly not the only issue we should 
be discussing at this time. Presently, science does not have a complete 
theory of consciousness. We do not understand how consciousness 
arose in ourselves. We don’t even have a definition of consciousness 
that everyone agrees with. Recent advances in AI—mixed with a lack 
of understanding of how AI systems work and a tendency on the part 
of media companies to generate revenue by stoking fears—contribute 
to a general sense that conscious artificial systems are just around the 
corner, ready to enslave us. Society may have to grapple with conscious 
AI in a distant future, but before we get there, plenty of more urgent 
matters warrant discussion: What happens when AI is used in ad 
campaigns? What about by law enforcement? Can AI algorithms 
solve a problem in unique ways, where its measure of “success” differs 
from that of its human designer? This last example is the well-known 
alignment problem. Suppose you ask a robot to get rid of the CO2 in 
the atmosphere to combat climate change, and it finds that the best 
way to achieve this goal is to get rid of the human population. The 
robot did not consciously decide to get rid of humans. The situation 
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simply describes an optimization problem gone wrong (for us!). 
Understanding when our current AI technology is being applied and 
the potential unintended consequences of its misuse are real-world, 
present-day issues that get pushed aside because they are not as exciting 
as the thought of berserk smart blenders chasing us around the house.
 In this book, we first address the functioning of neural network 
algorithms. We explain what it is that makes them tick and how they 
manage to work at all. Then, we critically examine their limitations, 
the rights and trust we have already granted them, and their potential 
for causing significant harm to our society, in some cases, if we are not 
careful. But let’s be clear: this harm is completely self-inflicted. The 
algorithms are not yet “out to get us”; we just don’t always use them in 
healthy and productive ways. 
 Why should you get involved in this discussion if you are not 
a scientist? Because each of us can influence our collective future. 
Technology advances with research, and research is fueled by money. 
Institutions get billions of dollars in government grants for research 
into different areas. The grants are made possible by taxpayer money—
your tax money. You have the ability to influence policy every time 
you go out and vote. The public can decide what areas of research 
should get more attention. But how can you make an informed 
decision without being, well, informed? When it comes to artificial 
intelligence, there is a lot of speculation, often in the media, about 
the dangers and the capabilities of AI. You will be much better served 
by understanding how these systems work and what we realistically 
need to worry about rather than making an emotional decision based 
on uninformed sensationalist ideas. This way, you can at least arrive 
at a decision by way of a thought process. If we don’t have a thought 
process to ground our decision-making, as often happens, we get 
disproportionate—typically radical and extreme—responses driven by 
fear. This happened when stem cell research was all but banned in many 
countries out of fears over possible misuse: critics concocted specious 
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moralistic arguments and completely disregarded the ethical dilemma 
of abandoning research that could contribute significant insight into 
terrible diseases like cancer, AIDS, and degenerative muscle disorders. 
 For many of us, AI immediately conjures up the specter of Skynet—
an intelligence created for the purpose of protecting national security 
that inevitably gains consciousness and wreaks havoc on humanity—
and its cyborg assassin, the Terminator T-800. But our fear of AI might 
derive from a more primitive and innate response to a perceived threat, a 
response that predates the development of technologies whose imagined 
descendants populate movies and science fiction novels—that is, the 
fear of the unknown. More specifically, that fear has often manifested 
as a fear of the Other: a creeping, gut-borne feeling characterized by 
increasing and alarming suspicions of newcomers, outsiders, or anyone 
beyond our circles of intimacy or relationality. What are these circles? 
Interestingly, we construct different ones depending on certain rules of 
engagement. First, there is the family circle, where we extend the most 
trust. Beyond this, we have friends and more distant relatives. Even 
our respective countries form a certain circle of trust, if not comfort; 
we typically feel more connected to our compatriots than to people 
from other parts of the world. We notice this when we travel and meet 
a fellow expat. Immediately we feel a connection to them even though 
we know very little about them; we just know that they belong inside 
one of our circles.
 In its beneficial, or at least benign, form, this distinction between 
insiders and outsiders can foster a sense of community. In its malignant 
form, as the twentieth century showed in unconstrained horror, it leads 
to xenophobia and fascism (and unfortunately such virulent nationalism 
has been on the rise again around the world). So far, we are just talking 
about relationships between people. What then can we expect from 
our relationships with other beings, including the artificial kind? It 
seems natural that we should be suspicious of artificial intelligence. 
In some ways, it is the ultimate threat: by definition an outsider, not 
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being human or natural, yet possessing the crown jewel of all qualities 
that separate us from mere animals—intelligence.1 Intelligence has 
given our species the superpower to change our planet and dominate 
all other living things on it. When looking at the full scope of what we 
have done with our intelligence—taking in our remarkable creations 
in the arts and sciences, our developments and advances living as social 
beings—in some very specific and clear ways, it has not served the 
natural world well: destroying forests, polluting oceans and waterways, 
wiping out entire species of plants and animals, and threatening 
those that are still around. It is no wonder that we should be outright 
mortified of a being, or entity, that shares very little with us yet finds 
itself in possession of our ultimate weapon.
 It seems that our primary concern, then, is with the form and 
extent of so-called intelligence in artificial systems. Over the course 
of this book, we systematically describe the mechanisms that are 
responsible for the advances we see today. Once we finally understand 
the machinery behind AI, we should feel empowered to take charge of 
our technology instead of being fearful of some synthetic omnipotence. 
At the very least, establishing a foundational understanding will give us 
the tools to judge what we should accept and what we should constrain 
when it comes to artificial systems that are now making decisions that 
affect our lives. My hope is that this book will not leave you feeling 
afraid but rather informed and, therefore, empowered.

1. Apes, dolphins, and even some species of birds like crows and magpies are known to be 
quite intelligent. When it comes to human-level intelligence, however, it’s quite clear that 
we stand alone. In the context of discussing possible alien civilizations, the scientist and 
educator Neil deGrasse Tyson has postulated that the difference in DNA between chimps 
and us is 1 percent on average. He asks the question, “If the difference between humans and 
chimps is driven by that one percent, and that one percent is responsible for an ‘intelligent’ 
chimp stacking boxes and an intelligent human building the Hubble space telescope, what 
might the difference be between an advanced alien civilization and us, even if they are 
just one percent smarter than us?” Now consider an AI that is just a few percent smarter 
than we are. “Neil deGrasse Tyson: Only 1% Separates Our Intelligence from Chimps,” 
YouTube video posted by Danica Patrick on Sept. 6, 2019, 4:54, https://www.youtube.
com/watch?v=F200wpEpJ4w.
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The rest of the book comprises four main chapters and a short 
conclusion. In chapter 1, we discuss the first artificial neuron created by 
humans and the history and motivation that led to its creation. Along 
the way, we meet individuals who were driven purely by curiosity—
that insatiable need to understand everything about our universe, 
from its physical laws to the phenotypic expressions of those laws. We 
examine how the humble artificial neuron evolved into a network of 
artificial neurons powerful enough to solve problems that were once 
considered computationally intractable, such as image recognition 
and natural language processing (e.g., understanding speech and 
writing, translating between languages). Wherever possible, we point 
out similarities between artificial and biological neurons, similarities 
that inspired the early work in artificial intelligence. Importantly, we 
unpack the multilayer perceptron—the first artificial neural network 
architecture ever created and still a fundamental building block of 
most state-of-the-art architectures in use today.
 Chapter 2 is all about vision. Here we discuss the problem that 
computer vision presents. Today, we take for granted that cameras and 
gadgets can track our faces and follow our movements. Even relatively 
inexpensive drones can be programmed to track and film us as we 
ski down a mountain. We search images for content using a variety 
of applications and tools. These tools can take a search query from 
us (something like “pictures of red cars in autumn”), analyze images 
for content (that shows red cars in autumn), and then return a list of 
images matching these search criteria. In the medical domain, similar 
applications are capable of searching biopsy scans for anomalous tissues 
that might be signs of disease. How is any of this possible? If you 
keep up with technology, none of this is surprising or even impressive 
anymore. But computer vision was once considered among the most 
elusive subjects to tackle in computer science. In chapter 2, we see why 
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computer vision is such a fundamentally difficult problem to approach, 
and we discuss how artificial neural networks have all but solved this 
problem. And finally, we introduce the convolutional neural network, 
which has become the de facto architecture for computer vision. In fact, 
together with the multilayer perceptron, they form a set of fundamental 
building blocks used in most neural network architectures today. 
Throughout, we continue to note the similarities between artificial 
and biological systems and, wherever possible, describe the biological 
system as the inspiration for and intuition behind the development of 
the artificial one.
 The overarching goal of the first two chapters, then, is to specify 
what neural networks look like and how they operate. Providing 
the layout of the neural networks (in graphic and linguistic form), 
we describe each layer and show how each neuron in one layer is 
connected to the neurons in subsequent layers. We also detail the types 
of operations taking place at each neuron. After reading chapters 1 and 
2, you should be able to answer—at least at a conversational level—
what neural networks are and how information is processed from the 
input to the output. 

In chapter 3, we dive deeper into the how questions. This is where 
we look at what gives artificial neural networks any right to work and 
elucidate the mathematical intuitions that govern most of them. We 
describe the training processes that enable neural networks to perform 
certain tasks. This information allows us to understand their limitations 
and start to grasp the current state of artificial intelligence. We explore 
whether these systems are capable of conscious thought—whatever 
that means to you—or whether they are enacting a more primitive 
method of information processing.
 In the final main chapter, we take a step back from our pursuit 
of understanding neural networks in specific and operational terms. 
Instead, we put to good use the information we learned in the preceding 
chapters and attempt a bit of introspection. Using our newfound 
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knowledge, we again ask the question of how dangerous artificial 
intelligence is and proceed to answer the question by evaluating levels 
of threat. We discuss areas (the judicial system, advertising) where 
artificial intelligence poses significant risk—without requiring the 
technological leap of gaining consciousness—and examine industries 
(automotive, health care, warehousing) where automation promises 
an improvement over present-day standards. More importantly, in 
this chapter we evaluate the current AI revolution against previous 
technological revolutions and attempt to learn from the past to 
understand our current moral and practical obligations.
 Having defused the panic about a robot takeover, in the conclusion, 
we provide a simple test for identifying classes of problems that are 
amenable to AI-based solutions and classes of problems that should 
remain in human control for the foreseeable future. The test provides a 
path to action by asking a set of questions for any new class of problems 
we may want to solve using automation. This set of questions enables us 
to reflect on the problem to understand whether the solution requires 
nuanced and difficult moral considerations or simply a set of specific 
rules to follow. Armed with these simple questions, we can then take 
control of deploying our AI tools in responsible ways.
 So let’s get to it. The path to learning whether Alexa is conspiring 
with Siri begins with chapter 1—including a brief diversion into what 
amounts to present-day technology’s ancient past.



What are artificial neural networks? Are they really made of 
neurons, like our brains? The structure of artificial neural 

networks presents a starting point in our pursuit to understand them 
but says very little about their capabilities and limitations. For this, 
we must dig deeper and ask more pointed questions. Why were they 
invented, and what kinds of problems can they solve? How do they 
know things? Can they learn on their own, or do we have to teach 
them? In this chapter, we dedicate considerable time to understanding 
artificial neural networks and their history. Their origin story is one of 
optimism and hope.

As you might imagine, the artificial neural network, much like 
our own brains, began its life as a single cell. Complex networks 
developed from that cell, and these networks are today’s rock stars of 
artificial intelligence. We use them for making sense of data. We use 
them to classify images, performing object recognition and tracking 
for self-driving cars. You might have seen a Tesla successfully merge 
from one lane to another without human intervention. The car has 
cameras and other sensors that help it capture the state of the outside 
world, but artificial neural networks are tasked with interpreting the 
data from its sensors to identify vehicles, pedestrians, traffic signs, road 
signs, and anything else that enables it to see the world. Researchers 
are currently investigating using neural networks in medical settings 

1
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as image classifiers to help diagnose different kinds of diseases, from 
melanoma to breast cancer to pulmonary ailments like pneumonia. For 
example, neural networks may be tasked with identifying anomalous 
regions in image scans of biopsied tissue or signs of pulmonary effusion 
in X-ray images. In a more general sense, we use artificial neural 
networks to process large volumes of data and extract patterns and 
trends from the data that might be significant to us. In some cases, 
this involves analyzing images, but neural networks are not limited to 
vision applications. We might train a neural network to predict the 
price of houses in certain neighborhoods or teach it to analyze financial 
markets’ historical data to forecast future trends. In other words, we use 
artificial neural networks as tools to solve certain classes of problems—
namely, classification problems and forecasting problems. 

But the history of artificial neural networks, in some ways, 
is not the pursuit of a tool for artificial intelligence. It started with 
researchers’ need to understand the human brain. Researchers like to 
use analogs and models to investigate concepts. It is difficult, however, 
to tinker with a real brain; people get in the way. Early researchers in 
neuroscience and psychology thought it would be useful to try to build 
an artificial brain as a step to understanding our own. 

To try to answer the questions we opened with, this chapter is 
broken into a few sections. We start by taking a stroll through the 
halls of history and examining the earliest steps (in the nineteenth 
century!) that contributed to building a functioning artificial neural 
network. We discuss how researchers came to view the neuron as the 
key element in information processing and look at the first artificial 
neuron: the McCulloch-Pitts neuron. We explain how developments 
in our understanding of the biological brain contributed to modifying 
the McCulloch-Pitts neuron into a more powerful system called 
the perceptron, which led to the simplest type of artificial neural 
network—the fully connected neural network, also known as the 
multilayer perceptron, or MLP (fig. 1.1). We explain why, although 
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artificial neural network research began in earnest in the 1950s, you 
probably didn’t hear about such networks until very recently: research 
in the field suffered many ups and downs from its inception, with 
many of the downs driven, in part, by overhyped promises. We try to 
make the case that, while hype is still a problem, it looks promising 
that artificial neural networks will stick around. Once we establish the 
progression of steps that led to modern artificial neurons, we examine 
how these neurons can be combined into complex networks. We look 
at examples and explain how information is processed by each neuron 
in the network and how the output of the network is calculated and 
interpreted. Finally, we close the chapter with a few use-case examples 
for how we can employ neural networks to solve real-world problems. 

Figure 1.1  A simple artificial neural network. Information flows from left to right. 
The two circles in the first layer are the input nodes. The three circles in the middle are 
the processing neurons, and the one circle on the right represents the output value. 
The output in a neural network signifies a “prediction” on the input.

DISENTANGLING THE NEURON

Before we jump into the more technical aspects of neural networks 
and how they function, let’s spend a few moments learning about 
their history. Understanding what early researchers did to decipher 
the mysteries of the brain will help shed light on why artificial neural 
networks operate the way they do.
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To apprehend neural networks, biological or artificial, we must 
begin with the neuron. We now know that our brains are made of 
billions of neurons and that neurons are the fundamental building 
blocks of information processing. But we didn’t always know this. And, 
as is typical of scientific advancements, the discovery of the neuron and 
interpretation of its function were not without contention. How did we 
come to view the humble neuron as the fundamental unit of processing? 
It starts with a young nineteenth-century Spaniard exuding energy and 
enthusiasm. His name was Santiago Ramón y Cajal. He was the first 
person to understand that the brain was made of individual neurons and 
that these neurons played a pivotal role in information processing. 

Cajal was born in 1852 in a small village in Aragon, in northeast 
Spain. As a young man, Cajal’s first inclination was to become an artist. 
He enjoyed drawing the natural world, a passion that would come in 
handy in his future scientific career (figs. 1.2–1.5). His father was a 
surgeon and professor of dissection at the University of Zaragoza. The 
younger Cajal eventually followed in his father’s footsteps and enrolled 
in the Zaragoza school of medicine, graduating in 1873. Cajal’s big 
contribution to neuroscience began in 1887. That year, Cajal traveled 
from Valencia to Madrid to learn about new technological advances 
related to sample preparation for inspection under a microscope. There 
he met a brilliant psychiatrist by the name of Luis Simarro Lacabra, 
who showed him brain specimens stained using a technique developed 
fourteen years earlier by the Italian Camillo Golgi. The technique 
involved hardening a piece of brain matter in potassium dichromate 
and later dousing it with silver nitrate. This had the effect of dyeing 
only a few types of cells, revealing their complete structures as black 
silhouettes against the unstained background. Those who knew of 
this technique—not many, as the technique had not enjoyed great 
dissemination in the fourteen years since its inception—knew it as 
Golgi’s reazione nera (black reaction). Upon seeing the specimens 
produced by Lacabra, Cajal quickly realized the inadequacies of the 
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current methods for studying nervous tissue. He would later write in 
his autobiography that the staining technique produced cells “coloured 
brownish black even to their finest branchlets, standing out with 
unsurpassable clarity upon a transparent yellow background. All was 
sharp as a sketch with Chinese ink.”2 Cajal used and improved the 
staining technique as he studied the neural tissue composition of the 
retina, cerebellum, and spinal cord. 

At the time, the prevailing scientific consensus, driven in large part 
by the German histologist Joseph von Gerlach, was that nervous tissue 
consisted of cells sprouting a variety of tangled projections that formed 
a continuous network known as the reticulum. According to this view, 
unlike other organs of the body, which could be separated into distinct 
components, the brain and nervous system could not be disentangled 
into fundamental and distinct units. Camillo Golgi analyzed nervous 
tissue following his own staining techniques and noticed that nervous 
tissue cells had two different kinds of projections: a cluster of short 
fibers that sprang and branched in many directions and a long cable that 
didn’t branch very much. He noticed that the bodies of the individual 
cells, although branching near other similar cells, did not in fact fuse 
to form a continuous reticulum, but so accepting was he of Gerlach’s 
description that he convinced himself that the long connections 
sprouting from the cells probably still formed a continuous path at 
some point he could not yet see. 

It was Cajal who first realized the individuality of the cells in the 
nervous system and, more importantly, the implications of what such 
structural organization might mean. The reticulum description of the 
nervous system was a monolithic representation impervious to external 
prodding, threatening to forever keep its operational secrets hidden in 
a singular mess of tissue. The idea that the nervous system is instead 

2. Cajal’s autobiography, Recollections of My Life (Recuerdos de mi vida), trans. E. H. Craigie 
with J. Cano (Cambridge, MA: MIT Press, 1989), quoted in Marina Bentivoglio, “Life 
and Discoveries of Santiago Ramón y Cajal,” NobelPrize.org, Apr. 20, 1998, https://www.
nobelprize.org/prizes/medicine/1906/cajal/article/.
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made up of billions of individual cells helps, in many ways, break the 
problem of understanding how it could function into fundamental 
building blocks and forms the basic principles of today’s understanding 
of the nervous system’s organization.  

Between 1894 and 1904, Cajal developed one of his most 
important works, Textura del Systema Nervioso del Hombre y los 
Vertebrados (Texture of the Nervous System of Man and the Vertebrates). 
This work contained detailed analyses and illustrations, made possible 
by Cajal’s artistic affinities and preparation in his younger years, of 
nerve cell organization and nerve cell structures. His illustrations 
continue to be reproduced in neuroscience textbooks even to this day. 
One of Cajal’s most important contributions is known as the law of 
dynamic polarization. This law states that nerve cells are polarized by 
splitting their main function between two distinct parts of their bodies, 
the input and the output parts. Cells receive input signals on their 
bodies and dendrites; they generate output signals through the axons. 

Framing the humble neuron as a discrete system capable of 
receiving inputs and producing an output formed the basic principle 
of how neural information is propagated in the brain. For their 
contributions to neuroscience, Golgi and Cajal shared the 1906 
Nobel Prize in Physiology or Medicine. Golgi’s Nobel lecture 
included a description of his view that neurons form reticular 
networks. Interestingly, this assertion was then contradicted entirely 
by Cajal’s Nobel lecture, which necessarily focused on the role of the 
neuron as a distinct unit of the nervous system, far from the concept 
of a singular, inaccessible reticulum. Cajal continued to fight for his 
discoveries and disseminate his ideas until his death in 1934. Those 
ideas form the foundations of the modern understanding of neural 
information processing, and his contributions are central to artificial 
neural networks.
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Figure 1.2  Tumor cells of the covering membranes of the brain, 1890. Cajal Institute 
(CSIS), Madrid.
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Figure 1.3  A purkinje neuron from the human cerebellum, ca. 1900. Cajal Institute 
(CSIS), Madrid.
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Figure 1.4  A cut nerve outside the spinal cord, 1913. Cajal Institute (CSIS), Madrid.
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Figure 1.5  “Coupe transversal de la rétine d’un mammifère” (Cross section of the 
retina of a mammal). Illustration from Les nouvelles idées sur la structure du système 
nerveux: chez l’homme et chez les vertébrés (Paris: C. Reinwald, 1894), 112.
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 It’s difficult to imagine the full impact of the functions of such a 
simple unit, which takes an input signal and produces an output signal. 
It’s hard to conceive that when aggregated over a network of billions of 
such connections we might get intelligence or even conscious behavior. 
Scientists aiming to explain how activities in the brain relate to overt 
behavior in the individual have puzzled over this problem for centuries, 
and they continue to do so today. To understand how complex systems 
work, it is important to prod them, measure them, and alter their 
organization in ways that allow us to ascertain a correlation between 
output behavior and the state of the system at each point in time. Clearly, 
we are limited in our ability to perform these kinds of investigative and 
analytical work when it comes to biological (especially human) brains, 
as changes in these areas typically come with severe adverse effects in 
the individual. The need to understand biological neural information 
processes birthed a new set of tools that eventually heralded a new age 
of artificial intelligence. But it all started with the need to understand 
the brain. The holy grail was to build a model of the brain that we 
could tinker with. 

GATEWAYS AND GATES

In 1943, Warren McCulloch and Walter Pitts published a research 
paper titled “A Logical Calculus of Ideas Immanent in Nervous 
Activity,” where the authors proposed the first model of an artificial 
neuron. It was a very simple system: a node with inputs that could 
be either 0 or 1 and a firing threshold, which could be any value and 
served as a mechanism for determining when the neuron would fire. To 
fire, the aggregate of the input values into the neuron needed to match 
or exceed the threshold. 

For example, consider a neuron with two inputs X1 and X2, a 
threshold value of 2, and an output Y. If both inputs X1 and X2 are 1, 
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then 1 + 1 = 2, which matches the threshold value of 2; therefore, the 
neuron fires, and Y = 1 (fig. 1.6). If both inputs are 0, then 0 + 0 = 0, 
which does not match or exceed the threshold value of 2; thus, the neuron 
does not fire, and Y = 0. Moreover, if either input signal is 0, then 1 + 
0 = 1, which does not meet the firing threshold of 2. Again, the neuron 
would not output a signal, and the output value Y would be 0. This was 
the first functioning artificial neuron, and whenever you see your little 
Roomba headbutting a table leg in apparent artificial frustration, take a 
moment to think back to Santiago Ramón y Cajal and the McCulloch-
Pitts neuron; the little Roomba would not exist without them.

1

1

1
2

X 1

X 2

Y
2

Figure 1.6  A McCulloch-Pitts neuron with two inputs, a firing threshold of 2, and 
one output. In the example on the right, both input signals have a value of 1.

 The McCulloch-Pitts neuron is a simple system meant to model 
the most elemental functions of biological neurons. In 1943, thanks to 
previous work by Cajal and Sir Charles Scott Sherrington (a 1932 Nobel 
laureate and author of The Integrative Action of the Nervous System), we 
knew that biological neurons received input signals via the dendrites and 
that based on some internal threshold or a more nuanced calculation, the 
neuron would either send out a signal through the axon or not. If you 
notice, the McCulloch-Pitts neuron approximates the basic elements in 
this process. It expects a set of values through the input connections, and 
based on a simple internal state (a threshold value), it outputs either a 1 
or a 0. The question is how useful a system like this is. Can we really do 
anything with something so simple? It turns out that we can. 
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One of the more useful things we can do is implement a special 
set of logic functions known as logic gates. Interestingly, all modern 
advanced electronics and computing are based on logic gates. They help 
us transform 0s and 1s from signals traveling in a wire to states upon 
which we can make decisions. To build the intuition for how simple 
systems like neurons can perform complex tasks when integrated in 
complex networks, it will be helpful to understand logic gates. The 
simplest logic gates are not, and, and or.

AND Gates
The and logic gate has two input wires (fig. 1.7). When both input 
wires are “on” (i.e., both wires have a signal representing the value 1), 
the output of the and gate is 1. If both input wires are “off” (i.e., both 
wires have no signal, representing the value 0) or even if either one of 
the input wires is “off,” the output of the gate is 0. For the and gate to 
output a signal of 1, both input 1 and input 2 must be 1 (table 1.1). 

How can we utilize this capability in a more practical use case? 
Suppose you are building a security feature common in industrial 
machines—like a hydraulic press—where to ensure that the operator’s 
hands are off the danger area while the machine is operating, there are 
two buttons that must be constantly pressed by the operator for the 
machine to work. In this system, you might add a logic and gate with 
input wires connected to the two buttons in the control panel and 
connect the output of the logic gate to the machine’s circuit controller. 
Only when both buttons are pressed will both inputs to the and gate 
have a value of 1, and only then will the and gate output a 1, signaling 
that the heavy machinery can proceed to operate. If neither of the 
buttons is pressed or if only one button is pressed, the and gate will 
output a value of 0, and the machine will remain off.

1
0

0
AND

Figure 1.7  An and logic gate with two inputs and one output. If either of the inputs 
is 0, the output is 0. If both inputs are 1, the output is 1.
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Table 1.1  and Gate and Possible Input/output Combinations

Input 1 Input 2 Output
0 0 0

0 1 0

1 0 0

1 1 1

NOT Gates
The not logic gate is probably the simplest of the logic gates, and it 
functions as a signal inverter (fig. 1.8). It has one input wire and one 
output wire. If the input is 0, the gate outputs a 1. If the input is 1, the 
gate outputs a 0 (table 1.2). 

We can apply this behavior to a wide array of use cases. For 
example, suppose we want to design a sensor that can tell us if the fuel 
inside the fuel tank of a car drops below a certain level. We might set up 
a fuel sensor connected to a not gate. While the sensor is submerged 
in the fuel, the input to the not gate is 1, and the output is 0. An 
output signal of 0 is interpreted by the control circuit as the fuel level 
being fine. As soon as the fuel level drops below the sensor’s reach, the 
input signal to the not gate becomes 0, and the output turns to 1. This 
causes the not gate to send a signal to the control board indicating that 
we are low on fuel.

0 1NOT

Figure 1.8  A not logic gate, with one input and one output. If the input is 0, the 
output is 1. If the input is 1, the output is 0.

Table 1.2  not Gate and Possible Input/output Combinations

Input 1 Output
0 1

1 0
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OR Gates

The or logic gate is similar to the and gate (fig. 1.9). It has two input 
wires and one output wire. It outputs a signal when either input wire 
is on (table 1.3). 

Again, we can take advantage of this function by acting on an 
event based on a sequence of past events. Say that we are tasked with 
implementing a payment system for a public transportation service, 
a subway, and there are two methods customers can use to pay the 
fare. They can choose to scan a payment card and transfer the funds 
electronically, or they can choose to pay in cash. The payment system can 
be connected to an or gate where the electronic payment system and the 
coin collector system are connected to the input wires of the logic gate, 
and the output of the or logic gate is connected to the controller board 
for the turnstile. While the customer has not paid either electronically 
or using cash, the or gate continues to not output a signal (output is 0), 
and the turnstile remains locked. As soon as the customer pays either 
electronically or using cash, a signal (output is 1) is sent to the turnstile’s 
controller board that lets the customer pass through. 

1
0

1OR

Figure 1.9  An or logic gate with two inputs and one output. If either input is 1, the 
output is 1. If both inputs are 0, the output is 0.

Table 1.3  or Gate and Possible Input/output Combinations

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 1
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Logic Gate Systems
Hopefully you can begin to see how powerful individual logic gates 
can be. And just as individual neurons are combined to form powerful 
networks, we can also combine logic gates by using the output of one 
gate as the input to another gate. 

Consider an automated process for receiving travelers at an airport 
in a country belonging to the European Union. (Clearly this is an 
unrealistic example, but bear with me.) There are two ways to get into 
the country: if you are a citizen of the EU, you can pass right in; if you 
are not a citizen of the EU, you must show a valid visa and international 
passport. We could build a system that lets travelers through based on 
an and gate combined with an or gate (fig. 1.10). The and gate is 
connected to one of the or gate’s inputs. The and gate outputs a 1 if 
you have an international passport and a valid EU visa. The other input 
of the or gate is set to 1 if you are a citizen of an EU nation. Following 
this logic, if you are a citizen of the EU, at least one of the inputs into 
the or gate is set to 1; therefore, the output of the or gate is 1, and 
you are allowed through. If you are not a citizen of the EU, one of the 
inputs into the or gate is 0, so for the or gate to output 1, the other 
input must be 1. The other input depends on the output of the and 
gate, which is only 1 if you have both an international passport and a 
valid EU visa. 

OR

AND
1

0

1 1

1

Figure 1.10  An and gate and an or gate automatically controlling access into the EU. 

We can continue to combine logic gates and build complex circuit 
systems. In fact, if we combine enough logic gates (millions of them), 
we can build modern computers. Logic gates are the building blocks 
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of the control flow and decision systems that form the backbone of 
programming languages. Software consists of a series of instructions 
that a computer can understand. These instructions are sometimes 
predicated on certain logical conditions (e.g., “if this, then that”). Those 
conditions are made possible by logic gates. When we read about new 
computer processors—CPUs or GPUs—sporting millions of transistors, 
this is essentially what those numbers mean. Transistors are used to a 
large extent to implement logic gates, so millions of transistors equate to 
millions of logic gates. So why, again, are we talking about logic gates? 

It turns out that we can build logic gates using McCulloch-Pitts 
neurons, and logic gates were already well-known constructs in the 
1950s.3 This provided scientists with the realization that if you could 
build logic gates with artificial neurons, then these neurons could be 
used to build other kinds of powerful systems, maybe even a model 
of the brain. It gave scientists permission to continue investigating 
artificial neurons.

Fine-Tuning the Neuron
A limitation of the McCulloch-Pitts neuron is that it takes binary inputs 
and outputs binary values. Even in the 1940s, we knew that inputs into 
biological neurons were not always binary values (i.e., full-intensity 
signal or zero-intensity signal). In biological neurons, the signals are 
nuanced and cover a range of intensities. Furthermore, the decision 
on whether the neuron should fire, also referred to as the activation 
function of the neuron, used in the McCulloch-Pitts neuron is the 
threshold function, which again we knew doesn’t resemble biological 
neurons very closely (fig. 1.11). 

In 1949, Donald Hebb, a Canadian psychologist researching 
how neurons contribute to the learning process, wrote a book titled 
The Organization of Behaviour. In this book, Hebb introduced the 

3. Charles Babbage (widely regarded as the father of the digital computer) used early 
(mechanical!) logic gates in the 1830s in his “analytical engine.” In the 1920s and 1930s, 
more modern logic gates were invented for the computers of the time.
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theory of Hebbian learning, which revolutionized the way neural 
information processing was understood and helped change the 
way that artificial neurons were implemented. In his book, Hebb 
says, “When an axon of cell A is near enough to excite a cell B and 
repeatedly or persistently takes part in firing it, some growth process 
or metabolic change takes place in one or both cells such that A’s 
efficiency, as one of the cells firing B, is increased.”4 In this statement 
Hebb proposes that as neurons fire together, not only is the connection 
between the neurons strengthened, but this very operation is a 
fundamental step in the learning process. This suggests that weights 
should accompany the connections to neurons, where the weights 
modulate the importance of each connection over time. That is, the 
information flowing through a neural network is not dictated by the 
input values alone; the connections between the neurons themselves 
are strengthened or weakened through the learning process by adding 
a weight value to each connection. The weights affect how much of 
the input value into that connection is received by the neuron. The 
addition of weights means that neural networks are not obdurate, 
unchanging things. Instead, they can be adjusted, and information 
can be routed and rerouted depending on how the connections 
between the neurons are strengthened or weakened, much like how 
water might flow downriver depending on which obstacles it finds. 

Take a moment to ponder this discovery. It was extremely 
important. The addition of weights to the connections was akin to 
adding a frequency tuning dial to a radio. A radio that is built tuned 
to a specific frequency, with no dial, is like the McCulloch-Pitts 
neuron. We must rebuild the neurons to change their outputs, just 
as we must rebuild the radio to change the frequency it’s tuned to. 
The addition of weights to the neuron suggests that we can move the 
tuning dial on the neurons and change their behavior at run time, 
much as we can change the frequency on a radio by turning the dial.

4. D. O. Hebb, The Organization of Behaviour: A Neuropsychological Theory (New York: John 
Wiley & Sons; London: Chapman & Hall, 1949), 62.
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Figure 1.11  Three activation functions we refer to often in this chapter. The sigmoid 
activation function (a) outputs a value between 0 and 1 for all its inputs, with an 
input 0 producing 0.5 as output. The rectified linear unit activation function (b) 
outputs 0 for all negative inputs, and outputs the unmodified input value for all 
positive inputs. The threshold function (c) outputs a 0 for all input values below the 
threshold value; for input values equal to or greater than the threshold, it outputs a 1.

THE PERCEPTRON

Frank Rosenblatt, an American psychologist working in 1958 at 
the Cornell Aeronautical Laboratory as part of a project funded by 
the U.S. Office of Naval Research, studied the work on the artificial 
neuron done by McCulloch and Pitts and recent discoveries by Hebb 
and developed the perceptron. The perceptron was a modification of 
the McCulloch-Pitts neuron that incorporated Hebb’s weighted input 
connections, as well as allowing each individual input to take a value 
between 0 and 1, instead of the binary (all-in/all-out) approach of 
the McCulloch-Pitts neuron. These changes more closely aligned the 
perceptron to biological neurons. 

The history of artificial neural networks is riddled with subtle 
but crucial discoveries. The addition of weights and real numbers 
(numbers with fractions that can measure continuous quantities; e.g., 
all numbers between 0 and 1, not just 0 or 1) hinted that it might be 
possible to build general models of the brain that could be adjusted 
to solve general sets of problems, as opposed to specific problems. As 
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Rosenblatt described in his 1961 book, Principles of Neurodynamics, 
there are two approaches to creating models for studying the brain: 
monotypic models and genotypic models. 

Monotypic models are similar to our pretuned radios with no dials, 
while genotypic models are adaptable and allow tuning to different 
frequencies without having to build a different radio. In the monotypic 
model, we start with functional requirements of some “psychological 
function,”5 for example, a well-defined recognition algorithm with 
specific input/output conditions. That is, in the monotypic model, we 
find a psychological function that we want to model. Say we want 
to model how smell is processed in the brain. We might design an 
artificial system capable of detecting certain types of smells and then 
design a specific reaction to each smell. Once our artificial system is 
functioning, we monitor the process of detecting smells and reactions 
to each smell in a human volunteer, and we try to find where the 
artificial and biological systems are similar. The monotypic approach 
for studying the brain starts with a specific set of inputs and specific 
set of desired outputs, builds a system that can map those inputs to the 
desired outputs, and finds similar behavior in biological systems. We 
might then update our model based on what we see in the biological 
systems. This approach better aligns with the McCulloch-Pitts neuron. 
It is a purposeful approach where we know exactly the kind of solution 
we are building.

In the genotypic approach, instead of starting with well-defined 
functions and comparing our artificial system to the brain, we start 
with a set of generic learning rules and build a more general algorithm 
that can learn to model any set of problems following the same 
training procedure (rather than a training procedure or design specific 

5. Frank Rosenblatt, Principles of Neurodynamics (Buffalo, NY: Cornell Aeronautical 
Laboratory, 1961), 11. All other quotes in this section are drawn from Melanie Lefkowitz, 
“Professor’s Perceptron Paved the Way for AI—60 Years Too Soon,” Cornell Chronicle, Sep. 
25, 2019, https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-
60-years-too-soon.
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to the problem at hand). For example, instead of building a system 
for detecting a defined range of smells, another system for detecting 
a defined set of tastes, and yet another system for detecting a desired 
range of sounds, the genotypic approach aims to find a generic design 
that can detect input stimuli that could be sounds, tastes, or smells. The 
genotypic approach lends more plasticity to the design of our artificial 
networks because the design does not have to closely implement a set 
of initial requirements; instead, the network can learn to adjust itself 
to develop the requirements that help it meet its output goals. By 
incorporating both real-number values into the network connections 
(numbers between 0 and 1), as opposed to the Boolean (0 or 1, true 
or false) nature of the McCulloch-Pitts neuron, and the weighting of 
synaptic connections, the Rosenblatt perceptron is better equipped for 
implementing genotypic models. 

Rosenblatt viewed decision-making and intelligence in the brain 
as following a set of statistical and probabilistic algorithms where, 
instead of mapping a set of input stimuli to a specific set of output 
psychological behaviors (monotypic models), the brain maps classes 
of inputs to classes of outputs (genotypic models). There is a very 
important distinction between these two approaches. If the brain 
functioned exclusively based on mapping specific inputs to specific 
outputs—the collection of predefined algorithms necessary to perform 
all the functions we perform daily and throughout our lives—we 
would need a staggering collection of discrete algorithms in our brains. 
This would make the dream of creating artificial systems capable of 
emulating human-level intelligence almost certainly impossible. If, 
instead, the brain functioned as a statistical system mapping classes of 
inputs to classes of outputs, we would not need a specific algorithm for 
every function we perform; we’d just need an algorithm for each class 
of functions we perform. This at least offers a reduction in the number 
of systems we need to emulate if we want to artificially build human-
level intelligence.
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Of course, the brain (and nature) need not listen to Rosenblatt, 
and in fact, it may be that the brain employs both approaches, some 
specific algorithms for special functions and generic algorithms for 
most other functions. Rosenblatt’s point was that if we want to have a 
shot at building a system that resembles human intelligence, and since 
we don’t really know how the brain exactly works anyway, let’s assume 
that it works in the way that offers us a greater chance at emulating 
it and see how far we get. It is important to note that Rosenblatt, at 
least initially, did not build the perceptron with the purpose of creating 
artificial intelligence for its own sake. His primary goal was to build a 
system that he could tinker with and alter to help him better understand 
our brain.

So how did this perceptron really work? The Rosenblatt perceptron 
functioned as follows: For a perceptron with five inputs X1, X2, X3, 
X4, X5, each input connection (analogous to the biological neurons’ 
synapses) has a weight (w1, w2, . . ., w5) associated with it. The weights 
are also real numbers, which means they can take any value between 
0 and 1 (note that the values can also be greater than 1, but they are 
typically normalized to the 0–1 range). The process for calculating the 
output of a perceptron is to perform a weighted sum over the inputs 
and apply the activation function on the result. The classic activation 
function for the perceptron was the threshold function, just as it was 
with the McCulloch-Pitts neuron, but, as we saw in figure 1.11, there are 
many activation functions that could be used. In the case of the threshold 
function, we check whether the result of the weighted sum is greater than 
the threshold value. If it is, the neuron outputs a 1; otherwise, it outputs 
a 0. A weighted sum operation is performed as follows:
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The formula might look complicated but remember that  
simply means a sum, so the equation is saying that the output value 
(V) is equal to the sum of the input values (x) times the weight (w) 
of the connections, for all inputs (j), plus b. We are going to largely 
ignore b until chapter 3. For now, we just need to know that it’s 
called a bias, and as we can see, it doesn’t contribute a lot to the 
output compared to the input connections and the weights.6 For the 
next two chapters, we want to build an understanding of how neural 
networks work at the neuron level, so we are going to concentrate on 
the most important part of the input/output process—that is, the 
inputs, the weights, and the activation functions. Once we calculate 
the weighted sum over the inputs, we take the resulting value V and 
perform the activation function calculation O = f(V), which gives us 
the output value (O) for the neuron.

To calculate the output of the perceptron shown 
in figure 1.12, we perform the following operation, 

, where f is the 
threshold activation function with a threshold value of 2. The neuron 
outputs a 1 if the result of the summation is greater than or equal 
to 2; otherwise, it outputs a 0. This all sounds great, but how do we 
get these magical weight values? The weights of the perceptron are 
initially chosen randomly; they then get adjusted during the training 
phase of the model when the output is evaluated against expected 
results, and updates are made to the weights to ensure that the model 
performs better during each iteration of the training cycle. But more 
on this later.

6. The bias is certainly a necessary term, and depending on the scale of the data, it can become 
quite important. We are temporarily ignoring this term, however, because the more involved 
calculations concern the connection weights. The math is already complex enough, and 
accounting for the bias in our calculations might confuse novice readers. But note that, 
as described by the equation, we would add the bias term after every set of per-layer 
transformations.
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Figure 1.12  A Rosenblatt perceptron with five input connections. Each connection 
has a weight (w) associated with it. The value of the weight can be any number between 
0 and 1. The output of the perceptron depends on the weighted sum operation passing 
the threshold test.

 If you are wondering whether this perceptron has practical 
applications or if it’s just a scientific novelty item, it is definitely 
useful in solving certain types of problems. The perceptron was first 
implemented in software for the IBM 704. It was a computer the size 
of a room and used punch cards as a user interface. That perceptron 
was trained to distinguish between punch cards marked on the left 
and punch cards marked on the right—an incredible achievement for 
the time. Rosenblatt called the perceptron “the first machine which is 
capable of having an original idea.” The first implementation of the 
perceptron as an automation tool was the Mark 1 perceptron, developed 
in 1958; in this case, it was a machine, as opposed to software. It was 
designed for image recognition capable of analyzing input images of 
20 pixels width by 20 pixels height. The input into the perceptron 
was a camera with 20 × 20 calcium sulfide photocells. The 400 (20 
× 20) photocells were randomly connected to the input channels of 
the perceptron; that is, the system employed a perceptron with 400 
inputs. The weights of the connections to the perceptron were encoded 
by an array of special resistors called potentiometers, which could be 
actively adjusted to vary the resistance and in turn vary the voltage. 
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In computer systems, values of 0, 1, and anything in between are 
represented using voltages. The potentiometers were useful to allow 
for adjusting each connection weight at run time and representing 
any value between 0 and 1. The potentiometers were adjusted during 
the learning phase using electric motors to dial into the right voltage 
value for each weight. In 1959, Bernard Widrow and Marcian Hoff 
of Stanford University applied advances in the perceptron to the first 
implementation of neural networks to solve a real-world problem. 
These were artificial neural networks trained to eliminate noise from 
phone lines. Named ADALINE and MADALINE (which stand for 
ADAptive LINear Elements and Multiple ADAptive LINear Elements, 
respectively), these systems are still in use today! 
 It seemed that all was going well with artificial neural networks, 
and real artificial intelligence—complete with humanlike androids 
ready to do our bidding—was just over the horizon. So what happened? 

Right around this time, enthusiasm over a possible new era of 
human-machine interactions seemed to reach a boiling point, with the 
New York Times running an article titled “new navy device learns by 
doing: Psychologist Shows Embryo of Computer Designed to Read and 
Grow Wiser” and the New Yorker writing, “Indeed, it strikes us as the 
first serious rival to the human brain ever devised.” Rosenblatt himself 
didn’t do much to ground such overhyped expectations with statements 
like, “We are about to witness the birth of such a machine—a machine 
capable of perceiving, recognizing, and identifying its surroundings 
without any human training or control.”7

CALL OF DUTY RESCUES THE NEURAL NETWORK 

Unfortunately for Rosenblatt, and artificial neural networks in general, 
the excessive attention these systems garnered in a short period served 
to irk artificial intelligence researchers pursuing more traditional 

7. Lefkowitz, “Professor’s Perceptron.”



36 Is tHE ALGorItHM PLottInG AGAInst us? 

approaches. Most notable among these researchers was Marvin Minsky, 
who in 1969 coauthored a book titled Perceptrons (with Seymour 
Papert). In the book, Minsky took aim at the perceptron and its 
inability to distinguish between classes that are not linearly separable. 
The perceptron that Rosenblatt implemented for image recognition 
using a 20 × 20 photocell camera consisted of a single-layer perceptron, 
and single-layer perceptrons are limited to linearly separable problems. 
That is, if you think of a classifier as a line that separates two classes 
of objects (say, blue dots from red dots), a line can only separate these 
two classes of objects if they are arranged in such a way that a line can 
bisect the space in which they live. Take a group of blue marbles and 
red marbles spread over a tabletop: we could position a stick between 
the red marbles and the blue marbles only if the marbles are already 
grouped by color. If the marbles are mixed on the surface of the table, 
a stick could not be placed in a way that separates blue marbles from 
red marbles. This is the attack that Minsky launched on the single-layer 
perceptron. More specifically, he cited that the single-layer perceptron 
could not implement the exclusive or (xor) logic gate. 

We discussed logic gates earlier in the chapter. If we refer to the 
description of the or gate, we saw that the gate outputs a 1 if either 
input X1 or X2 is 1, including the case where both inputs are 1. The 
xor gate outputs a signal of 1 only if either input X1 or X2 is 1, not if 
both are 1; this is the “exclusive” part. It turns out that the single-layer 
perceptron cannot implement this logic gate. To understand why, it 
helps to think of the perceptron as a linear classifier. If we graph out 
the possible gate outputs depending on the possible gate inputs, we see 
that for the and and or gates, we can easily draw a line that separates 
the 0 and 1 outputs, but for the xor gate, we cannot draw a single line 
that separates the two classes of outputs (fig. 1.13). This has profound 
implications because the kinds of problems we need to solve in the real 
world are most often not linearly separable. 

To be fair, Minsky was aware that a plausible solution to this 
problem was to stack more perceptron layers together and create a more 
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complex neural network. The problem, as Minsky pointed out, was 
that a neural network complex enough to solve nonlinearly separable 
problems like the classification of images of higher resolution would 
take an impractically long time to train. That is, it would take too long 
to calculate the correct weight values for each connection between the 
neurons in each layer. This criticism ushered in an era that is known 
as the “AI Winter.” For the next twelve years, government funding for 
neural network research all but dried up. This is the problem with hype, 
and science is not immune to it. Scientific progress typically happens 
along a smooth curve, with new findings slowly building up from 
previous discoveries; that is, it’s a gradual process. Only seldomly does 
scientific progress experience a stepped advance where a new discovery 
significantly improves on established wisdom. When some scientists 
and the media invariably overhype new technologies or discoveries, the 
hype contributes to the technology’s demise when predictably the result 
does not match the public’s expectations. It’s easy to play historical 
revisionism, but perhaps Minsky’s attack would not have been so lethal 
if instead of expecting the perceptron to be the end-all-be-all solution 
to AI, we had just seen it as a gradual step in the right direction.

X1

X2

X1

X2

X1

X2

AND OR XOR

= 0 = 1Output:

Figure 1.13  Possible outputs of the and, or, and xor logic gates. The and gate outputs 
a 1 only when both X1 and X2 are 1. This is shown as the red circle; otherwise, it outputs 
a 0 (blue circle). The outputs of an and gate are linearly separable: we can draw a single 
line that separates the two classes of outputs, 0 and 1. The same is true for the or gate. 
But for the xor gate, we cannot draw a single straight line to separate the classes of 
outputs: the outputs of the xor gate are not linearly separable.
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 Thankfully, neural networks would make a resurgence. The mood 
started to change again in 1982 when John Hopfield presented the 
Hopfield Net at the National Academy of Sciences. Also, at around 
this time, Japan announced a fifth-generation computer project aimed 
at bolstering national research in artificial intelligence, including neural 
networks. This was announced at the U.S.-Japan Joint Conference on 
Cooperative/Competitive Neural Networks, reinvigorating the U.S. 
Defense Department’s interest in neural network research. Funding 
soon started to flow again in an effort to maintain the United States’ 
technological edge in the face of Japanese advancements. Periods of 
inflated expectations and funding followed by disillusions and dried-up 
funds would continue into the 1990s and early 2000s. In 2012, Alex 
Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, of the University 
of Toronto, authored a paper titled “ImageNet Classification with Deep 
Convolutional Neural Networks” that helped reignite interest in AI, 
which has maintained to the present, and this time it promises to endure 
a bit longer. Neural networks are already solving real-world problems, and 
although what their future looks like and what they might still be capable 
of are subject to much speculation, the solutions they are providing 
will continue to serve as fertile ground for sustained development. The 
hype situation has not improved much over the past few decades, but 
something unexpected has facilitated neural networks’ persistence, in full 
research fury, almost a decade after being rediscovered. 
 So what changed in 2012? In the 1960s, researchers knew that if you 
stacked a series of single-layer perceptrons and created a more complex 
network known as the multilayer perceptron (MLP), you could solve 
nonlinear problems. The problem, as Minsky pointed out at the time, 
was that the process of training the network—in other words, finding 
the correct value for each connection weight—would take hundreds or 
thousands of years of computational time, which made it impractical. 
Computers were much more limited, however, in the 1960s. Also, 
researchers were thinking of computations as happening within CPUs. 
CPUs are the main processing component of a computer system, and we 
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can think of instructions executing in CPUs as executing sequentially. 
That is, if we want to perform ten operations, the CPU starts with the 
first operation, proceeds to the second operation, and so on. When 
the problem we are trying to solve consists of performing millions of 
computations (as is the case with complex neural networks), if these 
computations are done sequentially, the time required to train the network 
will make it impractical even for the fastest modern CPUs. Still, as CPUs 
became more powerful in the late 1990s and early 2000s, some large CPU 
clusters known as supercomputers were able to crunch vast numbers of 
computations, and research into neural networks slowly picked up again. 
Considering that not everyone has access to a supercomputer, however, 
neural networks remained at the fringe of artificial intelligence research. 
Luckily though, advancements in a completely different industry were 
about to pull the humble neural network out of the periphery and place 
it right into the mainstream. 

The gaming industry had been pushing graphics processing 
unit (GPU) companies to produce faster and more efficient GPUs 
since the first pixelated computer games appeared in the 1980s. One 
interesting thing about computer graphics is that operations happen at 
the pixel level. If we think of a computer game from a pure graphics 
perspective, what we are looking at is a series of frames that must be 
drawn on a screen. (Like a still from a movie, a frame is the image 
that fills your screen and shows the evolving scene.) The frames are 
made of thousands (or millions) of pixels. Increasing performance and 
efficiency in computer graphics means creating processors that can 
parallelize the work that’s necessary to draw those pixels. This meant 
that in 2012 the most powerful processors people could access outside 
of supercomputers weren’t CPUs; they were GPUs. For the work we 
need to perform to train a neural network, we can think of CPUs  
and GPUs as powerful calculators. The difference between the CPU and 
the GPU is that the CPU performs all its calculations sequentially, and 
the GPU can perform thousands of operations in parallel; therefore, a 
GPU can process a set of operations much more quickly than a CPU. 
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Krizhevsky, Sutskever, and Hinton were aware of this when they 
set out to train a complex neural network using a GPU. Their neural 
network implementation, named AlexNet, competed in the ImageNet 
Large Scale Visual Recognition Challenge in 2012 and achieved state-
of-the-art results when compared with any image recognition model 
that year. It is important to note that, along with advancements in 
GPUs, ImageNet itself was another equally important benefit that 
Krizhevsky, Sutskever, and Hinton enjoyed in 2012, which did not 
exist decades earlier. In 2006, Fei-Fei Li, at that time a researcher at 
Princeton University, began working on an interesting project to build 
a vast data set of natural images along with annotated labels. The label 
of an image describes the subject of that image and can be used to teach 
AI models to correctly classify images according to their labels. Thus, 
this data set presents an invaluable tool for training AI models in visual 
recognition tasks. Today, ImageNet has over 14 million annotated 
images, and it is a keystone in the development of many computer-
vision applications.

Interestingly, the architecture of AlexNet was similar to a 
convolutional neural network (CNN) proposed by Yann LeCun in 
1989. Unfortunately, in 1989 LeCun didn’t have access to ImageNet 
or a GPU powerful enough to train a deep (many-layered) model. 
What GPUs did, though, was democratize access to powerful 
calculators that could perform thousands of operations in parallel. 
Practically anyone can afford a GPU and set up a system to train 
a neural network. Suddenly, progress could be made in every lab, 
without running into bottlenecks when trying to access specialized 
supercomputers. This, along with ImageNet and similar data sets 
created by researchers with the help of the internet, allowed for an 
explosion in neural network research: all sorts of existing architectures 
were explored, and new architectures also emerged. AlexNet is a 
CNN, and we look at CNNs in the next chapter when we discuss 
computer vision in detail. Now we examine the model that started it 
all: the multilayer perceptron.
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PEELING BACK LAYERS

We have seen how single neurons work. We learned about their history 
and how different discoveries helped transform the design of artificial 
neurons. Now we want to see how neural networks function. We want 
to design a network that’s made up of several layers of artificial neurons, 
and we want to understand what happens at each neuron. 

Let’s consider a simple MLP, also known as a fully connected 
neural network. We can create a simple model with three input nodes, 
followed by a four-neuron layer, followed by a two-neuron layer, and 
ending with a single output neuron (fig. 1.14). The layers between 
the input and the output—that is, the meat of the neural network—
are called the hidden layers. As noted in the introduction, the term 
deep learning, or deep neural networks, refers to neural network models 
that have more than one hidden layer. In our case, the model we are 
discussing has two hidden layers. 
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h3
1

h4
1

h1
2
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2

Figure 1.14  A multilayer perceptron (MLP) with two hidden layers. Three input nodes 
are connected to the first hidden layer (h1), and h1 is connected to the second hidden 
layer (h2), which is connected to the output neuron.
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The first hidden layer, the one with four neurons, we are going to 
call h1, and the second hidden layer we are going to call h2. MLPs are 
also known as fully connected neural networks because each neuron 
of every layer is connected to every neuron of the next layer. Input 
node I1 is connected to h1

1, h2
1, h3

1, h4
1. Input node I2 is also connected 

to h1
1, h2

1, h3
1, h4

1, and so is input node I3. Then, the output of h1
1 

is connected to h1
2 and h2

2. The output of h2
1 is connected to h1

2 
and h2

2, and so are the outputs of h3
1 and h4

1. The output of h1
2 is 

connected to the output neuron O, as is the output of h2
2 (fig. 1.14). 

The output of each neuron depends on the values of each connection 
associated with it and an activation function. We call the values 
for each neuronal connection weights, and the activation function 
dictates the range of values that the neuron can output (or in some 
cases, it may limit the output of a neuron until a certain input value 
range is crossed). 

The purpose of an activation function is to introduce nonlinearity 
into the calculations the neural network is performing. We discuss 
why nonlinearity is important in the section below on vector spaces. 
For now, we can just recall that biological neurons exhibit similar 
nonlinear behavior. Hebb showed that the relationship between the 
input signals at the dendrites and the output signal at the axon does 
not follow a linear path, where the output value is simply the sum 
of the input signals. The output of the neuron is regulated by some 
internal function that considers the input signals and transforms 
them by some process. The artificial neurons in our model emulate 
this process by using mathematical activation functions. Researchers 
have come up with many activation functions, and depending on the 
problem we are trying to solve, certain activation functions are better 
suited than others. Two popular activation functions are the sigmoid 
and the rectified linear unit (ReLu) activation functions. The sigmoid 
function outputs values between 0 and 1, so it’s widely used for use 
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cases where we want the neural network to output a probability; 
probabilities range between 0 and 1, with 1 as the maximum value 
we can achieve (a 100% chance). The ReLu activation function is 
one of the most popular activation functions in use today. It simply 
looks at the input value, and if it’s a negative value, it outputs a 0; 
if it’s a positive value, it outputs the input value. For the following 
example, we use the ReLu activation function for all neurons except 
the output one. This is a common approach for binary classification 
neural networks (binary classification means separating data samples 
into two possible classes, e.g., cat vs. dog). For the output neuron, 
we use the sigmoid activation function to ensure that the output can 
be interpreted as a probability. Now let’s see how information flows 
through the neural network. 

To start, we calculate the output of the first neuron in h1. We are 
going to presume that the neural network has already been trained, 
and we have the weight values for each connection (fig. 1.15). Let’s 
assume the input vector we want to process is I = [0.2, 0.01, 0.4].
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Figure 1.15  The weight values of the connections to h1
1. Note that we have removed 

the connections to the other neurons in h1 only for visibility reasons.
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We then execute a weighted sum operation between the input vector 
and the connection weights:

h1
1 = ReLu(w1,1

1
 I1 + w1,2

1I2 + w1,3
1I3) 

= ReLu(–0.1*0.2 + 0.25*0.01 + (–0.03*0.4))

Recall that ReLu functions output 0 for negative values.

= ReLu(–0.0295)

= 0 

We calculate the output of the second neuron in h1 in the same 
fashion (fig. 1.16).
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Figure 1.16  The weight values of the connections to h2
1 (as in fig. 1.15, simplified 

for visibility). 

h2
1 = ReLu(w2,1

1
 I1 + w2,2

1I2 + w2,3
1I3)

= ReLu(0.21*0.2 + 0.3*0.01 + 0.1*0.4)

= ReLu(0.085)

= 0.085 
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The output of the third neuron (fig. 1.17):
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Figure 1.17  The weight values of the connections to h3
1. 

h3
1 = ReLu(w3,1

1
 I1 + w3,2

1I2 + w3,3
1I3)

= ReLu(0.65*0.2 + (–0.025)*0.01 + 2.4*0.4)

= ReLu(1.1)

= 1.1 

The output of the fourth neuron (fig. 1.18):
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Figure 1.18  The weight values of the connections to h4
1. 
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h4
1 = ReLu(w4,1

1
 I1 + w4,2

1I2 + w4,3
1I3)

= ReLu(–0.01*0.2 + 0.0018*0.01 + (–2.9)*0.4)

= ReLu(–1.16)

= 0 

Now that we have the output of each neuron from h1, these values 
become the inputs into the second layer, h2 (fig. 1.19). To calculate 
the output of the first neuron of h2, we proceed as follows:
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Figure 1.19  The inputs and weight values of the connections to h1
2. Note that each 

input into layer h2 is the output of h1 [0, 0.085, 1.1, 0], which was calculated in the 
previous steps. 

h1
2 = ReLu(w1,1

2
 h1

1 + w1,2
2

 h2
1 + w1,3

2 h3
1 + w1,4

2 h4
1)

= ReLu(–0.21*0 + (–0.115)*0.085 + (–2.5)*1.1 + (–3)*0)

= ReLu(–2.75)

= 0 
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The output of the second neuron in h2 (fig. 1.20):

O

h1
1

h2
1

h3
1

h4
1

h1
2

h2
2

0

0.085

0.15

0.28

0.68

2.79
1.1

0

Figure 1.20  The inputs and weight values of the connections to h2
2. 

h2
2 = ReLu(w2,1

2
 h1

1 + w2,2
2

 h2
1 + w2,3

2 h3
1 + w2,4

2 h4
1)

= ReLu(0.15*0 + 0.28*0.085 + 0.68*1.1 + 2.79*0)

= ReLu(0.77)

= 0.77 

Finally, the output of the neural network is calculated using the 

outputs of h2 as inputs to the output neuron (fig. 1.21).
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Figure 1.21  The output of h2 as the input into the output layer, along with the 
connection weights to the output layer. 
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Note that for the output layer, we use the sigmoid activation function in 
this example. The sigmoid function takes the following form: 

O = sigmoid(w1,1
3

 h1
2 + w1,2

3
 h2

2) 

= sigmoid(1.25*0 + 2.18*0.77)

= sigmoid(1.68)

= 

= 0.84

 That’s it—we did it! We started with an input and a set of 
predetermined weights, and we processed the input using the neural 
network and got a result. The sigmoid activation function looks a bit 
complicated, but we don’t have to dwell on it too much. We just need 
to know that it takes a value as an input and produces an output that’s 
between 0 and 1, which can be interpreted as a probability. At this stage 
in our progress, we still don’t know how to interpret the output value, 
but that’s OK. The purpose of this exercise was to show the operations 
taking place inside a neural network. Although we are not yet sure 
what 0.84 means or how it can be useful to us, we have now seen the 
operations that produce an output, and we can see that they are simple 
operations. There is no magic happening in the individual calculations 
themselves; for the most part, we are just performing multiplications 
and additions. These multiplications and additions between the inputs 
and the weights of the neuron connections are what we call a weighted 
sum operation, and these operations are the fuel that powers the 
predictions in artificial neural networks. 

In common parlance, we call the output of a neural network a 
prediction. This is because, in a general sense, what the neural network 
is doing is outputting a value that has a certain probability of being 
correct. Based on previous data that the network saw during training, 
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the neural network builds a certain model of the world. When we 
present it with a new input, it outputs a prediction. In classification 
use cases, the prediction is typically a probability that the input belongs 
to a particular class of objects. Not all the use cases where we employ 
neural networks today are classification problems, however; some are 
regression problems (a type of forecasting problem), where the neural 
network predicts a numerical outcome for some input data. 

Now we have seen what a neural network’s execution looks like; 
we’ve taken that plunge into the cold water. Next, we can ask the 
question, how can we use these tools to solve real-world problems? To 
answer it, we will step out of the pool and gradually ease back in with 
a couple of examples. First, we look at classification examples, and later 
we look at a regression example.

CLASSIFICATION USE CASES

Suppose we have the following task: a Hollywood production studio 
hires us to implement a tool that can scan movie reviews from users 
in some message forum and decide whether the reviews are positive or 
negative. This is a classification problem. We have some data—in this 
case, a few lines of text from a movie reviewer describing their thoughts 
on the movie—and we need to create a tool that can analyze that data 
and tell us whether it’s a positive review or a negative review. 

If you take a moment to think about this problem, you’ll realize that 
it’s not as simple as it might initially seem. Naively, we might suggest 
to simply look for some key words—bad, good, and OK—and decide 
that the review is either positive or negative based on the occurrence of 
those key words. If we take such a simplistic approach, we quickly realize 
that the problem is more nuanced than this. Consider the following 
sentences: “I was worried that this movie was going to be terrible. I was 
wrong.” Clearly this is a positive review, but it has two negative words in 
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it: terrible and wrong. Now consider these: “The greatest thing about this 
movie was when it ended. Even the best actors couldn’t save it.” This is 
an example of a negative review that has a few generally positive words 
in it: greatest and best. It’s evident that we can’t simply look at the words 
in isolation; we must consider the body of the text and the relationship 
each word has with every other word in the text. 

These types of problems belong to the natural language processing 
(NLP) field of research, and neural networks are the best models we 
have for solving NLP problems today. When you ask Alexa to order 
that new pair of socks or tell Google Home to play a different song, 
an NLP neural network is processing your speech and making sense of 
your commands. So how do we solve the movie-review problem? How 
do we teach a neural network what makes a positive review? 

The first thing we must do is get hold of a training data set. In this 
case, a training data set is simply a large collection of movie reviews that 
we can present to the neural network to train it on what positive and 
negative reviews look like. A training data set typically has thousands of 
samples; in our case, a sample is a single movie review. A training data 
set also has unique pieces of information called labels. Since we want to 
train our model to learn the meaning of positive and negative reviews by 
looking at a large number of training samples, the samples must contain 
classification labels that say “positive” or “negative” for each review. These 
labels are typically produced by humans—researchers and volunteers—
who painstakingly label thousands of samples from training data sets. 

We have been hired to create a tool that can classify movie reviews. 
We construct a neural network that can take bodies of text as inputs 
and then output a classification: positive or negative. We must find 
a training data set that we can use to train our newly created model. 
Thankfully, Stanford University publishes a data set of labeled movie 
reviews scraped from the IMDb (Internet Movie Database) website. 
The data set, which is freely available to everyone, contains 50,000 
samples of movie reviews split into 25,000 training samples and 25,000 
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testing samples. Training data sets are typically split into training and 
testing samples. When we are training the neural network, we want it 
to learn from the training data, but we don’t want it to “memorize” the 
training data. If the neural network learns the correct answer for each 
training sample by memorizing the training samples, that doesn’t really 
tell us how well the network will perform in a real-world situation. The 
testing samples help us gauge whether the neural network has truly 
learned information that can be applied to unseen data or if it’s simply 
memorizing our training data. 
 As we saw in our simple example above, neural networks are 
mathematical systems that work with numbers. They expect numbers 
as inputs, transform those numbers using mathematical operations, and 
output numbers. Part of our work in designing a neural network model 
to solve a problem is to figure out how we can represent, or encode, our 
data as numbers. Suppose we have the following review: “The movie 
was extremely good.” How do we convert this sentence into a set of 
numbers? Computer scientists and statisticians have developed a few 
ways to achieve this. 

One way is to first come up with a dictionary (or vocabulary) of 
words used by the reviews in the training data set. We can create a list 
of all words used by all the reviews in the data set. Then we identify 
the most frequently used words in the reviews. For example, suppose 
we produce a list of 80,000 words used by the movie reviews. We can 
select the 10,000 most frequently occurring words in the reviews and 
create a vocabulary of 10,000 words. Each word in this vocabulary is 
unique, meaning that it occurs only once in the list, and each word 
has an index associated with it. The first word has an index of 1, the 
second word has an index of 2, and so on. Let’s recall the sentence 
we want to analyze: “The movie was extremely good.” We can break 
the words into a vector: [The, movie, was, extremely, good]. Next, we 
check the index of each word in the list of 10,000 words and replace 
the words in the vector by their indices. But as we are doing this, we 
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notice that the word extremely doesn’t appear in the list of 10,000 
words we have created. That means that the word extremely isn’t used 
frequently enough in our training data set, and it is not part of our 
vocabulary, so we can discard it. The vector then becomes [The, movie, 
was, good]. When we use the indices of each word in the 10,000-word 
list, the vector becomes [10, 4, 22, 100]. We can interpret this vector 
as follows: the word the is the 10th word in the list, the word movie is 
4th, the word was is 22nd, and the word good is 100th. Now we have 
managed to convert our review into a set of numbers, a necessary step 
because our neural network needs numbers to process information; we 
are well on our way to being able to ask our model to predict whether 
this review sample is positive or negative. But we can’t do it just yet; we 
must make one more modification. 

Since neural networks are dealing with numbers, we want the 
range of values for all inputs to be roughly the same; this is called 
normalizing the data. For example, suppose we have a set of reviews 
that happen to use words found toward the top of the vocabulary list. 
That is, all the words in these reviews have indices of less than 100. 
This would create a word vector where all values are less than 100. 
Then, suppose the next set of reviews comprises mostly words found 
in the bottom half of the 10,000-word list. Say the vectors consist of 
values that are greater than 8000 (e.g., [8001, 9245, 8444, 9001]). 
Recall the way that inputs are processed by the neurons in the network. 
We use the input values and perform a weighted sum operation over 
the neuron’s connection weights, and the result of this operation gets 
modulated by the activation function of the neuron. High values and 
low values inputted into a neuron affect the output of that neuron 
differently. We don’t want the output of the network to be skewed based 
on which portion of the list the review words came from, because that 
information may not have anything to do with the actual sentiment of 
the review. We want the network to learn what makes a review positive 
or negative. This requires the network to learn the semantic meaning 
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of each word and the relationship between words in the vocabulary. 
The positions of the words within the vocabulary list, however, were 
arbitrarily chosen. When we created the vocabulary of 10,000 words, 
we did not organize the words in any meaningful way; therefore, we 
don’t want the network to learn to weigh words differently based on 
the portion of the list they came from, which would certainly happen 
if some indices were much larger than others.  

One way we can normalize the input vector so that the values for 
all words exist in the same range is known as one-hot encoding. That is, 
instead of the 4-dimension (four-valued) vector [10, 4, 22, 100] for 
“The movie was good,” we create a 10,000-dimension vector, where 
we place a 1 at the index in the list for each word that appears in the 
review, and we place a 0 for words in the list that don’t appear in the 
review. This would produce a vector of 10,000 values that looks like 
this: [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, . . . (eleven 0s), 1, . . . (seventy-seven 
0s), 1, 0, 0, 0, . . . (zeros all the way to the 10,000th place)]. It might 
seem complicated, but it really isn’t. We have placed a 1 at the 4th 
place in the vector, a 1 at the 10th place in the vector, a 1 at the 22nd 
place, and a 1 at the 100th place. Everywhere else we have placed a 0. 
Now we have a method for encoding reviews as vectors of values that 
can be presented to a neural network for analysis. This vector encodes 
information about the words in our review but does not place more 
weight on a group of words versus another based on where in the list 
they appear. The vector is normalized, and all values are 0 or 1. 

There is an advantage to using this one-hot encoding method, 
which is that all input vectors—that is, all reviews—will result in 
the same vector size. For example, we might have different reviews 
consisting of different lengths of text, but the process we are describing 
for generating the input vector will generate vectors that are all the 
same size: 10,000 values. As we will see, this is important because our 
neural network needs to know how many values are in the input, and 
the number of values cannot vary between samples.
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The astute reader may be noticing a few potential problems with 
this method of encoding our input data. By choosing a vocabulary 
that is significantly smaller than the number of words in the body 
of the training data set (and in the English language in general), we 
have conceded that some words will be discarded from our reviews. 
These are the words that appear least frequently in the training data 
set. How do we know that we are not discarding valuable information? 
Furthermore, the one-hot encoding method we described has a flaw. 
Suppose that the word good appears three times in the review. With the 
proposed encoding method, we can only encode each appearing word 
once, as there is only one index for the word good in the list. Thankfully, 
the problem we are trying to solve is to classify the review as a negative 
or positive review. We are not trying to provide a degree of positivity 
or negativity (because it wasn’t asked of us). For example, our model 
does not have to classify the review into “good,” “great,” “greatest,” 
or “bad,” “terrible,” “worst.” This means that losing such information 
as how many times the user said this movie was “good” may not be 
as important. But in general, these are all valid concerns. And there 
are other more complex methods of encoding information that avoid 
some of these issues and help encode word frequencies that would be 
necessary for multiclass classification, where we want to predict degrees 
of sentiment as opposed to a binary case of positive or negative. Even 
with the downsides we have discussed, however, this method still works 
pretty well and can produce really good results for binary classification 
tasks like the one we are discussing.

All right, so now we have our input vector. What do we do next? 
We present it to our neural network model. Let’s define an architecture 
for a neural network model capable of solving this problem. We can 
design a neural network that has an input layer, two hidden layers, and 
an output layer. The input layer will accept 10,000 values. The first 
hidden layer will consist of 32 neurons with a ReLu activation function. 
The second hidden layer will consist of another 32 neurons also with 
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a ReLu activation function. Can you guess how many neurons will be 
needed for the output layer? The output layer will consist of 1 neuron, 
and it will have a sigmoid activation function. It is important that we 
choose a sigmoid activation function for the output neuron because we 
want the output to be a probability. That is, we want the output to tell 
us the likelihood that the review is either a positive review or a negative 
review, and sigmoid functions output values in the range of 0 to 1, 
which can be interpreted as a probability. If this is not clear yet, don’t 
worry; it should be made clear soon enough. 

Let’s discuss the architecture of the neural network. We are choosing 
the ReLu activation function for the neurons in the hidden layers. ReLu 
functions are simple: they take an input value; if the value is negative, 
they output a 0, and if the value is positive, they output the same value 
(i.e., the input value). The reason we are using the ReLu activation 
function is that, for most artificial neural network architectures and for 
most use cases today, researchers have empirically determined (by trial 
and error) that ReLu functions work best. For a long time, sigmoid 
functions were very popular, but ReLu functions have a property that 
makes the training process easier, so over time most researchers started 
adopting the ReLu function. The more interesting question is why 
ReLu functions work so well, and unfortunately the answer isn’t exactly 
known. As the famous AI researcher Geoffrey Hinton once put it (and 
I am paraphrasing), “This is all made up.” 

Some of what we do in artificial neural networks is inspired by 
biological systems; as we know, biological neurons have internal states 
that cause them to output signals based on inputs but in a nonlinear 
way. That is, the strength of the output signal isn’t always proportional 
to the strength of the input. ReLu, sigmoid, and other mathematical 
functions help add nonlinearity to artificial neurons, but that’s where 
the similarities to biological systems stop. We do not yet have a deep 
enough understanding of biological systems to form a framework that 
allows us to find the appropriate activation function for an artificial 
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neuron. Instead, researchers try different ideas empirically and keep 
the ones that work. Answering the question of how we choose the size 
of the hidden layers—how many neurons we want per layer—is also 
more of an art than a science. There isn’t a set of rules that prescribe 
a specific number of neurons for a given problem. Over decades of 
research, some intuition has been built. There is a correlation between 
the size of the input, the size of the training data set, and the general 
range of neurons we should use, but no formula will tell us how to 
design the network. Again, much of this has been learned empirically. 
Researchers try different architectures and test their models, and then 
they adjust them when the systems don’t work right away.
 We have designed a neural network model and a process we 
can use to encode the input data into numbers that we can feed the 
neural network. We selected a sigmoid activation function for the 
output layer because we want to interpret the output as a probability. 
So how does that work exactly? How do we interpret the output of 
the neural network we have built? Recall that the goal of our neural 
network is to classify the input—a movie review—into one of two 
classes: positive or negative. As we know by now, neural networks 
only understand numbers. Therefore, we need to encode the classes 
“positive” and “negative” using numbers. We can do that by assigning 
to the class “positive” a label of 1 and assigning to the class “negative” 
a label of 0. We could certainly do the reverse: we could say the 
class “negative” is 1 and the class “positive” is 0; we just need to 
be consistent in our data set. When the neural network outputs a 
value that’s between 0 and 1—because of the sigmoid function—we 
interpret that value as a confidence level that the input belongs to 
class 1 or 0. For example, suppose the network outputs 0.78, and we 
have established that a label of 1 means a positive review. This output 
tells us that the neural network is 78 percent confident that the review 
is positive. That is, based on the training data, there is a 78 percent 
probability that the review it’s currently analyzing is a positive review. 



 PoLArIZAtIon AnD Its ConsEQuEnCEs 57

Similarly, an output of 0.5 means there is a 50 percent chance of the 
review being positive. 

We should take a moment to appreciate the importance of what 
we have accomplished. We have just taken an input sequence of text, 
converted it into a format that a mathematical model—the neural 
network—could analyze, determined how to design a neural network 
that can classify text into different categories by learning to pick up on 
emotional cues (this type of classification where we try to understand the 
mood of the author is also called sentiment analysis), and learned how to 
interpret the output of the neural network. We have seen that the process 
of solving this problem, while not intuitive, is surprisingly simple when 
we break down the set of operations. It’s all just a set of multiplications 
and additions, with activation functions thrown in the mix. 

The task of performing sentiment analysis was, for a long time, a 
very difficult problem to solve. As we saw, text isn’t a simple sequence 
of words where every word has the same weight. Some words are 
more important for conveying the intent of a sentence than others, 
and words tend to have intricate relationships (e.g., a word close to 
the start of a sentence might emphasize the meaning of a word far 
away). Consider the sentence “It is interesting that in some countries, 
especially in tropical regions, rain falls for most of the year.” The word 
“interesting” strongly relates to the word “rain” and the fact that it falls 
for “most of the year.” Look at how many words we had to skip to get 
to the meaningful part of the sentence. Then consider the sentence “It 
is hard to explain what makes a movie interesting.” In this case, the 
relationship is very close. The word “interesting” is directly related to 
its immediate neighbor, “movie.” These nuances make it difficult to 
develop a set of hard rules in the form of “if this pattern, then that 
choice,” which is how more classical intelligent systems were built. 
The reason neural networks are so powerful is that we don’t need to 
explain to them what makes a review positive or negative—which is 
difficult because we have a hard time writing down general rules for 
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those problems. (Give it a shot and see for yourself: try to write a set 
of rules for describing what makes a sentence positive, and try to apply 
those rules to a set of random posts.) Instead, neural networks learn to 
identify these rules for themselves. Take a minute and marvel at that! 

As we were introducing the execution process of the neural 
network and learning to interpret the input and output, we skipped 
over a very important part: the training. In this chapter, we very briefly 
explain neural network training. Then, over the next two chapters, 
we gradually expand on our knowledge base and dive deeper into the 
training process. As we have seen, the execution process of a neural 
network is quite simple, and the mathematics used barely approach the 
high school level. The training process is a different story. 

Why do we need training in the first place? In our examples thus 
far, we have used the weights of the connections between the network’s 
neurons as if they had been magically preset to the appropriate values 
to provide the correct outputs. But unfortunately, this is not how 
neural networks begin their life. Initially, before the neural network is 
trained, the weights of the connections are randomly initialized, so the 
predicted output is largely inaccurate. It is only through the training 
process that the weights are adjusted until eventually the predicted 
output starts to make sense. The weights of the model represent the 
learned information. We start with a randomly initialized set of weights 
and a training data set. The data set is a collection of samples from the 
problem domain. For example, if we want to train neural networks 
to distinguish between apples and bananas, the data set must contain 
a diverse number of apple and banana images. If we want the neural 
network to distinguish between positive and negative reviews, we 
need the data set to contain samples of positive and negative reviews. 
During training, the neural network is presented with a sample from 
the training data set. 

In an image classification example, a training sample is a single 
image from the data set; in a sentiment analysis example, such as our 
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movie-review problem, a training sample is a single review from the data 
set. We present the training sample to the neural network, and it predicts 
an output. Because the neural network is not yet trained, the prediction 
is going to be inaccurate; for example, it might say that a highly positive 
review is negative. Since this is a training sample, the sample has a label 
that tells us its true class; the label will say “positive” for a positive review 
or “negative” for a negative review (remember: the labels are numbers, 
so 1 for “positive” and 0 for “negative”). We then use a mathematical 
formula to calculate how wrong the current predictions got it. That is, 
we calculate how far the predictions of the neural network are from the 
actual labels, and we use that calculation to adjust the weights of the 
model so that the next time the model sees this sample, it gets a little 
closer to the truth. During training, we perform this operation for each 
sample in the data set and for many cycles, or epochs (i.e., cycles where 
the neural network sees each sample once). The training process typically 
lasts many epochs, so the model sees each sample in the training data 
set multiple times, each time extracting a bit more information and 
transferring that knowledge to the network’s weights. 

Let’s look at another classification example, this time from the 
vision domain. In the early 1990s, a significant amount of research 
went into creating algorithms for recognizing handwritten digits from 
U.S. mail envelopes. The training data set for this example consists of 
50,000 handwritten digits. This classification problem has ten classes as 
we need the model to learn to distinguish between ten classes of digits: 
0–9. The images of handwritten digits in this data set have a resolution 
of 28 × 28 pixels. In the sentiment analysis example, we converted the 
review samples into vectors where each word represented a different 
dimension of the vector. That is, for a review consisting of ten words, 
we produced a vector of 10 values, which we then converted into a one-
hot encoding vector of 10,000 values. For image classification, each 
pixel is a different dimension of the input vector, so for images of 28 
× 28 pixels, we produce a vector of 784 values (28 × 28 = 784), where 
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each value represents the light intensity of the pixel: a value of 0 means 
a black pixel, a value of 1 means a white pixel, and any value in between 
represents a grayscale. Now that we have defined the input vector, we 
can proceed to design a neural network to classify handwritten digits. 

We start with the input layer having 784 nodes, one for each pixel 
of the input vector. Next, we add a layer of 512 neurons with ReLu 
activation, followed by a layer of 64 neurons also with ReLu activation. 
Finally, we add an output layer of 10 neurons with a softmax regression 
function. The design choice of a 512-neuron layer and a 64-neuron 
layer is again driven by intuition and trial and error. Typically, we 
iterate over a few designs until we find one that’s efficient (in terms of 
number of parameters) and performs well.

We have not discussed softmax regression functions yet. You 
can think of them as similar to a sigmoid function but for multiclass 
problems. Whereas a sigmoid activation function is used for binary 
classification problems with the intent of outputting a probability that 
the input belongs to a single class—cat vs. dog, apple vs. banana—
softmax regression functions convert the output of the neural network 
into a probability where all outputs sum to 1. For example, our 
network has ten outputs, one for each possible class of the input digit: 
0–9. For a given input image, the network might output the following 
ten values: 0.80, 0.1, 0.0125, 0.0125, 0.005, 0.0025, 0.0168, 0.0168, 
0.017, 0.0169. This result tells us that the network is 80 percent 
confident that the input value represents a 0, 10 percent confident that 
it represents a 1, 1.25 percent confident that it represents a 2, and so 
on. If we sum all the output values together, we get 1. We can train this 
neural network on the 50,000 training images for five epochs. That is, 
the network will run through the training data set five times as it learns 
to predict the correct label for each image. After about five epochs of 
training, a neural network like this one can achieve around 98 percent 
accuracy in its predictions, meaning that the neural network correctly 
predicts the class of an input digit 98 percent of the time. This is quite 
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remarkable considering that, before neural networks, no other image 
recognition algorithm came even close to that level of accuracy. 

Why is an algorithm like this useful? In a practical sense, we can 
employ an algorithm like this at a sorting facility for the postal service. 
We might build an assembly line of sorting machines that receive a 
long stream of mail envelopes. The sorting machines can then look 
at the envelopes, recognize their zip codes, and sort the envelopes 
according to distribution regions. And there is another way that this 
algorithm is useful: it shows us that it’s possible to build systems, with 
relative ease, that can interpret images. Artificial vision systems were 
considered among the most difficult areas of automation before neural 
networks, so developing an algorithm that could recognize an image 
and interpret it was a tremendous achievement. It gave researchers a 
sense that computer vision might yet be possible. We discuss more 
about computer vision and state-of-the-art vision algorithms in the 
next chapter, and in the process, we will discover a new neural network 
architecture that avoids a crucial problem with our humble MLP. For 
a 28 × 28 pixel image (a very small resolution, impractical for most 
real computer-vision use cases), we needed a neural network with 784 
input neurons, which in turn set the stage for roughly the same number 
of neurons in the subsequent layers. Consider the size of a neural 
network required for resolutions of a few thousand pixels. It quickly 
becomes very difficult to process images using MLPs in this manner 
because we need larger MLPs with more and more neurons, which 
require dramatically more memory to process the input images. When 
we discuss computer vision, we will see a different type of network that 
manages to solve the vision problem with considerably fewer resources.

REGRESSION USE CASES

Classification problems, such as sentiment analysis and image 
recognition, are common use cases for neural networks. Another popular 
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use case, regression problems, involves the prediction of a continuous 
value based on historical data. For example, we might have a data set of 
previous transactions and valuations for a particular stock trading in the 
stock market. We might want to create an algorithm that can analyze the 
market data and predict a future price for a given stock. 

Or let’s say that you are a project manager. You know your team’s 
estimates for the number of hours required to complete a project are 
usually not very good: sometimes they overestimate and finish the project 
in half the time; sometimes they underestimate, and it takes much longer 
to complete than expected. Both underestimating and overestimating 
on projects contribute to the agelong struggle between management 
and developers. This is especially true in software development, where 
correctly estimating projects is notoriously difficult. It is obvious why 
underestimating the hours needed to complete a project is bad. And it 
might seem better to err on the side of overestimating, because if a project 
is finished in less time than quoted, then everyone should be happy, right? 
Unfortunately, it doesn’t work that way. When a project is scheduled, a 
variety of resources are assigned to that project; if the project is then 
completed in significantly less time than was originally allocated for it, 
the effects ripple through other scheduled projects. Now management 
needs to figure out how to reassign the suddenly freed resources. It also 
probably means that the project was quoted to the customer at a much 
higher price point than it should have been: do this too many times in a 
row, and you start losing clients to competitors with lower price points. 

It should be noted that the people doing the estimating are 
often experienced employees who are doing their best. But the reason 
estimating projects is so difficult is because of the number of variables 
that can affect the completion of the project. Sometimes requirements 
change halfway through the project. Sometimes, at the outset, the team 
does not have all the information needed to complete the project, and 
the information slowly trickles in as development progresses. In many 
cases, implementing a particular feature is contingent on a third-party 
company providing a key piece of equipment that inevitably gets delayed. 
These are all variables the person estimating a project must contend with 



 PoLArIZAtIon AnD Its ConsEQuEnCEs 63

and make assumptions about. Of course, you may say that all of this 
can be easily avoided by never starting any project until the team has 
absolutely everything they need. But this strategy would not be practical 
in dynamic environments like software development or any technology-
based field. Innovation, almost by definition, requires uncertainty, and 
uncertainty means that engineers often can’t predict all the problems 
they are going to encounter until they do encounter them, so estimating 
the time needed to fix the problems they haven’t yet encountered is not 
an exact science. 
 One possible solution to this problem of project estimation is a 
regression algorithm. Provided that the management team has kept a 
database with descriptive features of past projects and the actual time it 
took to complete those projects, it might be possible to create a neural 
network that can analyze the data and learn to predict duration for similar 
future projects. If we recall from our previous classification examples, 
features are dimensions of the data. In the case of sentiment analysis, 
a sentence was converted into a vector of numbers, and each value in 
the vector was a feature of that vector. In the case of handwritten-digit 
recognition, the image was converted into a vector of pixel values, where 
each value was a feature of the image. In the project estimation example, 
a data sample would be a vector of features that describe a given project: 
number of engineers assigned, experience level of engineers, number of 
components this project depends on, time of year when the project is 
running, and so on. And the label to predict would be the estimated 
time—say, 160 hours. The difference between a neural network 
algorithm and a human estimator is that the neural network algorithm 
should be able to find patterns in the data and the relationships between 
the features better than a human could. A human might be inclined 
to put too much emphasis on a specific feature—for example, number 
of engineers assigned—and estimate the time to complete the work 
simply based on the number of engineers available. The neural network, 
however, through the training process should be able to pick out the 
predictive features for each individual project. In one case, the number of 
engineers may indeed be the driving force behind the work estimation, 
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but in another, the relationship between other features might be more 
important. For example, the time of year when the project takes place 
and the client company may be correlated: at a particular company, the 
height of summer might be a time when most employees are on vacation, 
so getting vital feedback from them might be delayed. These nuances in 
the relationships among features that describe a project might be difficult 
for a human to pick up, especially when the project vectors contain many 
different features. But a neural network algorithm should pick up such 
details with relative ease.
 Again, these types of forecasting algorithms are referred to as 
regression algorithms. The simplest form of regression algorithm is one 
that performs linear regression, which we discuss at great length in chapter 
3. Linear regression is the process of trying to fit a line through a set of 
data points and using the line as an estimator for future points. What a 
neural network algorithm can do in a regression use case is automate the 
process of finding that best-fit line (fig. 1.22). We are now going to walk 
through a regression example and build a neural network estimator for 
a specific regression problem. Our Hollywood movie-review gig is done, 
and now we’ve been hired by a real-estate company. The company wants 
us to build a model to help valuate houses in a given city. 

Figure 1.22  A best-fit line (red line) running through a set of data points (blue dots). 
We can use the best-fit line to predict the value for missing data samples. 
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By now you know the drill. The first thing we need is a data 
set of samples—vectors of data points that describe a house—with 
their correct valuations. There is a data set well known to machine-
learning engineers: the Boston Housing Price data set, which describes 
a set of houses and their prices for different suburbs of Boston in the 
1970s. Each of its 506 data samples consists of a vector of fourteen 
dimensions. That is, the data set comprises 506 houses, where each 
house is described by a list of fourteen features (see table 1.4).

Table 1.4  Feature Description of the Boston Housing Price Data set

1 Per capita crime rate by town

2 Proportion of residential land zoned for lots over 25,000 sq. ft.

3 Proportion of nonretail business acres per town

4 Charles river dummy variable (1 if tract bounds river; 0 otherwise)

5 nitric oxides concentration (parts per 10 million)

6 Average number of rooms per dwelling

7 Proportion of owner-occupied units built prior to 1940

8 Weighted distances to five Boston employment centers

9 Index of accessibility to radial highways

10 Full-value property-tax rate per $10,000

11 Pupil-teacher ratio by town

12 B – 1000(Bk – 0.63)^2 where Bk is the proportion of Black residents by town*

13 LstAt: % lower status of the population

14 Median value of owner-occupied homes (in thousands of dollars)

*Note: Row 12 bears addressing, but to not break the flow of the current explanation, it will 
be addressed immediately following the end of this chapter.

Each house in the data set is described by fourteen values referring to 
criteria that are suspected to correlate with the price of a house (e.g., 
per capita crime rate in the town, number of rooms in the house, etc.). 
The reason machine-learning algorithms such as neural networks are 
useful tools for analyzing this type of data is that it’s very difficult for 
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a human to look at each of those fourteen data points across hundreds 
of houses and pick out the features that are most predictive of the price 
of the house. Intuitively, we might guess that the number of rooms is 
an important one, but how important is it compared to the location of 
the house? And the pupil-teacher ratio in the area? The purpose of the 
neural network is to learn these relationships from the data. 

We can create a neural network for the present problem as follows: 
The first layer contains 14 input nodes, one for each dimension of 
the data. The next layer contains 64 neurons with ReLu activation, 
followed by another 64-neuron layer. The next and last layer consists 
of a single linear neuron. A linear neuron is simply a neuron that 
calculates its output based on the weighted sum of the input and its 
connection weights without any further processing by an activation 
function (i.e., no threshold- or activation-related modulating). Recall 
that each neuron in each layer is connected to every other neuron 
in the following layer. The layout of the network is, as previously 
discussed, fine-tuned through trial and error. All we know for certain 
is that the first layer should contain 14 input nodes and the last layer 
should contain 1 output neuron. We need 14 input nodes because our 
input sample consists of a 14-dimension array. Similarly, we need 1 
output neuron because all we want the neural network to do is output 
the predicted price of the house; that is, we just need a single number 
to be output. Instead of two hidden layers with 64 neurons each, we 
could have chosen two hidden layers with 128 neurons each or one 
layer with 128 neurons and the next one with 64 neurons. We could 
have also chosen three hidden layers with 32 neurons each, and in all 
cases the neural network would have learned to predict a price for the 
house that represents, with varying degrees of accuracy, the training 
data. Typically, we test different arrangements and choose the one that 
performs best.
 Once we create a neural network, the process for training it 
on a regression problem is similar to the process for training it on a 
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classification problem. The training data set, which in our case has 
506 houses, also contains the target prediction for each sample in the 
data set; in other words, for each vector of fourteen values describing 
each house in the data set, we also have the true price for that house. 
The training is split into many epochs (i.e., cycles where the neural 
network sees all the samples in the data set at least once). At the start 
of training, during the first epoch, the neural network’s parameters are 
randomly initialized, so the price prediction for each house is not very 
accurate. Thankfully, we have the true price of the houses, so we can 
measure how far off the network’s predictions are from the true value 
of the house. Using this information (and a lot of calculus), we update  
the neural network’s parameters to minimize the difference between 
the expected value and the predicted value next time through. Just as 
we saw in the classification use case, over many epochs of training, the 
neural network parameters (the connection weights) are updated and 
tuned to predict the value of a house given a set of descriptors (the 
features) for the house. The hope is that once the neural network is 
trained, it has learned the relationship between the features describing 
the house and the value of the house. Then we can show it a new house 
that is not part of the training data set, and the neural network should 
be able to predict the value of that house.

VECTORS AND VECTOR SPACES

We have now spent a bit of time discussing fully connected neural 
networks and how we can build them to solve classification and 
regression problems, the two most common types of problems in 
artificial intelligence. We know how to build a network of neurons, 
a layer at time, to accept an input vector and output either a single 
value or some prediction vector. We have also said in passing that a 
classification algorithm (which includes neural networks) can be 
described as a line that separates graphed points in N-dimensional 
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space. The points on one side of the line belong to one class, while the 
points on the other side belong to the other class. Similarly, we have 
said that regression neural networks can be thought of as a best-fit 
line through a set of data points, where the line itself is a continuous 
predictor for all data points in that N-dimensional space. The problem 
with this explanation is that it’s not easy to visualize. 

Suppose you want to differentiate between images of a handwritten 
digit 1 and a handwritten digit 2. This “line separating points” analogy 
surely can’t apply here, right? How can you think of images as “points,” 
and then how can you use a line to separate images? It turns out that 
you can indeed treat images—or any type of data samples, including our 
houses and movie reviews—as points in some space. Typically, this space 
is multidimensional, so we call it a hyperspace. And the neural network 
is truly trying to find a line that separates these data points; however, 
because we are dealing with many dimensions, instead of a line (which 
separates points in two dimensions), we are trying to find a hyperplane. 
To understand this process, let’s think back to our high school days and 
recall what a vector is. 

In 2D space, a vector can be described as follows: V = (X1, X2), 
where X1 denotes the component of the vector in one dimension and X2 
denotes the component of the vector in the other dimension. A vector 
in 3D space can be described as follows: V = (X1, X2, X3), where again 
X1, X2, and X3 describe the components of the vector in each of the 
three dimensions. We can close our eyes and visualize a point in 2D 
space with an arrow starting at the origin and ending at the point. This 
is a 2D vector. We can also visualize a vector in 3D space as a point 
floating somewhere in the 3D world with an arrow starting at the origin 
and ending at the point (fig. 1.23). But can you visualize a vector in 
4D space? Unfortunately, we can’t visualize spatial relationships beyond 
three dimensions. But it turns out that the mathematics of vectors in 
four dimensions are the same as the mathematics of vectors in two and 
three dimensions. Although we can no longer visualize it, a 4D vector 
mathematically looks like this: V = (X1, X2, X3, X4), just like a 3D vector 
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but with an extra dimension. Similarly, a 5D vector looks like this: V 
= (X1, X2, X3, X4, X5). And an ND vector looks like this: V = (X1, X2, 
X3, . . ., XN). So manipulating vectors in a multidimensional space is 
similar to the process of manipulating vectors in 2D and 3D spaces, 
which are much more intuitive to us. We simply have to account for the 
extra dimensions. 

X 1

X2

X 3

V1 = (X1, X2, X3)
V1 = (X1, X2)

X 1

X 2

Figure 1.23  A vector in 2D space (left) and a vector in 3D space (right). A vector is just 
a point in some space with an arrow running from the origin to the point. 

 How is this useful? Once again, let us consider a 28 × 28 pixel 
image of a handwritten digit 1. To process this image through our 
neural network, the first thing we did was turn the image into a vector. 
We interpreted the color of each pixel as a number and then created 
a vector of 784 (28 × 28) numbers. That is, we created a vector V = 
(X1, X2, X3, . . ., X784) of 784 dimensions. Something very subtle and 
extremely important is happening here. Conceptually, we went from 
interpreting this image as a collection of 784 pixels of independent colors 
to interpreting this image as a single point in a 784-dimensional space. 
This constitutes a very important assumption. We are saying that the 784 
pixels are not just randomly independent pixel values that happened to 
resemble an image of a 1. Instead, we are saying that this image exists as 
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a single point in a universe with 784 dimensions where each pixel value 
constitutes a component of the vector in each of the 784 dimensions. If 
we consider other samples of handwritten 1s, it turns out that these are 
all single points in a 784-dimension virtual universe as well. 
 And now for the really interesting bit. Vectors prove to have a 
special property. We know that similar vectors point in roughly the 
same direction, whereas vectors that are different point in different 
directions. Using our intuition from 2D and 3D experiences, we could 
imagine that in a 784-dimension world there is also an origin point, 
and from this origin point, we could imagine that we have arrows going 
all the way out to each of the points that constitute our handwritten 
1s. Now, for fun, let’s throw in images of the digit 5. These are also 28 
× 28 pixel images, so they exist in the same 784-dimensional universe 
as our digit 1 images, but since they are a different digit, what would 
you expect this to mean in terms of vector space? If you answered that 
the digit 5 vectors would be pointing in different directions compared 
to the digit 1 images, you are correct. You deserve a break: go get a 
cold one! If you didn’t, then perhaps go back to the start of this section 
and give it another try. This is an important concept that is central to 
machine learning and artificial intelligence.
 Interpreting data samples as single vectors in some N-dimensional 
space means that you can imagine samples of the same class to be 
grouped somewhat together in that space and samples of a different 
class to be grouped in a different direction. Now that we have a way of 
interpreting data as groups of points, a classification algorithm simply 
needs to find a hyperplane (remember: a line in 2D, a plane in 3D, 
and a hyperplane in multidimensions) that bisects the vector space so 
that points on one side of the plane belong to one class and points on 
the other side belong to a different class (fig. 1.24). This is why vectors 
are so useful. They help us interpret our data in a way that lets us apply 
concepts from algebra and geometry to discover vital relationships 
among our data samples.
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X1

X2

X3

Figure 1.24  Two classes of vectors in a 3D space separated by a hyperplane. The vectors 
to the left of the plane (pointing to the purple points) belong to one class, and the vectors 
to the right of the plane (pointing to the green points) belong to a different class. Why 
is this useful? If we get a new sample and we do not know what class it belongs to, all 
we need to do is interpret it as a vector and see on which side of the plane it falls; then 
we can predict its class. 

In this chapter, our goal was to gain some understanding of how artificial 
neural networks work. It’s hard not to attribute mystical qualities to these 
analytic tools, given their name. But as we are beginning to see, they are 
simply mathematical constructs consisting of simple operations, mostly 
multiplications and additions that are organized in sequential steps. (The 
sequential steps, of course, are the layers of neurons stacked one after the 
other.) We started the chapter learning about the history of artificial neural 
networks and the first artificial neuron, the McCulloch-Pitts neuron. We 
saw how the artificial neuron was inspired by our understanding of the 
brain and how biological neurons process input signals. The McCulloch-
Pitts neuron, as the first incarnation of an artificial neuron, was a simple 
construct. It performed the minimum possible duties to be considered 
a neuron at all. As our understanding of biology progressed, helped by 
research from scientists like Donald Hebb, we learned that all inputs 
are not treated equally. There is a system of weights that can be adjusted 
to emphasize the signals from some inputs over others. This research 
from the field of biology made its way into the computer science field 
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(although, at the time, it wasn’t yet called computer science), and the 
artificial neuron was updated to include weights. This development led 
us to Rosenblatt’s perceptron and the first neural networks that could do 
something useful, ADALINE and MADALINE. 

We also saw that the first architectures of neural networks—namely, 
single-layer perceptrons—had a significant drawback. They could only 
be used to classify data points that are linearly separable. Now we know 
what that means because we discussed analyzing our data samples 
(images, text) in terms of points (vectors) in a multidimensional space. A 
data set that is linearly separable simply means that the data set’s classes 
can be separated by bisecting the space in which they live using a line or 
some hyperplane. Unfortunately, in practice most classification problems 
are not linearly separable in their natural space. For example, if we 
wanted to classify images of cats and dogs and we used a linear classifier 
directly on the images of cats and dogs, we would find that our classifier 
would perform poorly. The raw vectors—in other words, the vectors 
produced by converting the images into arrays of pixel values—are 
vectors that usually contain a lot of data that’s irrelevant to the problem 
(e.g., pixels of background information). Given these extra pixels and 
noise in the natural images, it’s difficult to expect that as vectors they 
would live in a space that’s neatly organized with cats on one side, dogs 
on the other side, and our separating hyperplane in the middle. Neural 
networks and the addition of extra layers (hence multilayer perceptrons) 
help us by transforming input vectors into a different hyperspace, where 
the resulting vectors are linearly separable. This is the secret of neural 
networks! They learn to transform input vectors into a hyperspace—in 
other words, into a different dimensional space—where the vectors can 
be linearly separated. 

In the next chapter, we look at computer vision, a bit of its history, 
and its similarities to biological vision. We also introduce a type of neural 
network architecture, the convolutional neural network (CNN), that is 
the bona fide neural network architecture for computer vision. 

But before we move on to the next chapter, we want to take a 
moment to address an important issue.
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BREAKPOINT: CONFRONTING A TROUBLING LEGACY

Row 12 of the Boston Housing Price data set describes the “proportion 
of Black residents by town.” This data set was compiled in the 1970s, 
and this feature (dimension of the data sample) overtly illustrates the 
prejudices of the times. Why are we including such a data set in an 
example in this book? This data set is one of the many “toy” data sets 
available online for machine-learning and artificial intelligence research. 
From tutorials and deep-learning books to online competitions, the 
Boston Housing Price data set is often used to benchmark AI models 
and compare the performance of new models to state-of-the-art ones. 
Yet, as ubiquitous as this data set is in the AI community, row 12 is 
almost never discussed. 

We could postulate many reasons for why it is never discussed, but 
I suspect the answer is simple and should be of great concern. Mostly, 
people don’t spend enough time looking at the data to even notice. 
The problem with row 12 should be obvious. It implies that there is a 
relationship between the number of Black people in a town and the value 
of the houses. The apologist’s response is equally obvious: What’s wrong 
with putting the information in the system? If it turns out that the model 
finds a relationship between Black people and house prices, how is that 
my fault? There are many problems with this interpretation. 

Take a look at table 1.4 again, and review all fourteen features 
for the housing price data set. Whenever we create a training data set, 
there is a subtle danger of creating a biased data set. I would say that 
a training data set is always biased in some way, a shortcoming that is 
almost impossible to avoid. It’s biased because someone constructed the 
data set by selecting a set of samples to be used for training the model. 
The fact that some samples are selected and some samples are not means 
that we are introducing bias into the system. Think of the handwritten-
digits data set. It contained 50,000 training samples. We don’t know 
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how many individuals contributed handwritten digits to the data set, but 
suppose 5,000 individuals contributed ten digits each. In a population 
of 300 million, it is not clear that the 5,000 selected individuals’ writing 
represents the way most people write numbers. So, by creating a data set 
of samples using digits from only 5,000 individuals, it’s possible that we 
are training a model with some bias toward how those 5,000 individuals 
write, which does not translate well to the general population. Clearly, 
there are different levels of danger in bias. If the handwritten-digits data 
set is indeed biased toward how a few people write digits, the worst that 
could happen is the model won’t generalize well in production, and it will 
make mistakes in interpreting the handwriting of the general population. 

Now let’s go back to table 1.4. Right away we can see that there is 
stronger bias in this data set, even if we disregard row 12. The data set 
consists of fourteen features that are used to predict the price of a house. 
By the mere act of selection, we have already placed more emphasis 
on those fourteen features than on any other possible predictors for 
house prices. Now consider row 12. When we include the number of 
Black people as a possible predictor for house prices, we are making the 
data set biased toward Black people—regardless of whether the data 
shows a positive or negative correlation between the feature and the 
house price. But as opposed to the handwritten-digits example, this 
bias has terrible consequences. There are three different possibilities for 
how row 12 can affect the data: Black people contribute to an increase 
in house prices; Black people contribute to a decline in house prices; 
Black people are not a predictor for house prices. Only one out of the 
three possible outcomes is positive toward Black people. This means 
that right away there is less of a chance for this data set to benefit Black 
people, and the fact that they were selected as a feature in the data set 
puts them, unfairly, in a defensive position at a simulated trial.
 Suppose that, indeed, our model finds a relationship between 
the number of Black people and house prices, and suppose that it’s 
a negative relationship. What the model cannot do is explain the 
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reason for this relationship. Does the result mean that if Black people 
move into an up-and-coming neighborhood, the real-estate value will 
drop? Or does it mean that, because of the well-documented “racial 
wealth gap,”8 Black households have lower median net worth and can 
often only afford to live in areas where real-estate value is already low? 
It is all too easy for social biases and prejudices to skew an analyst’s 
interpretation of the results and lead them to conclude, “Black people 
are bad for the real-estate value in a region.” Such an interpretation can 
then give rise to policies of segregation, where townships might decide 
to disallow Black people to move in, lest their real estate depreciate. 
This further alienates and disenfranchises people. 

The second problem with this example, if the first one wasn’t 
troubling enough, is the statistical significance of the data. The data set 
has 506 sample houses. Do we know how those samples are distributed 
around Boston? Can we draw conclusions about the relationship 
between the input into our model and the results without knowing 
this information? Yet it would be all too easy to use this result as a 
blanket reason to support prejudicial policies. Suppose it turns out that 
there is a negative relationship between Black people and house pricing 
in this data set. What about a different data set? What if the data set 
was larger and included other regions where Black households’ median 
incomes are higher? Or what if the data set included other ethnicities: 
Do we know how good the Irish or Italians are for real-estate value? 
How about Jews? We all know how this ends. 
 This data set was generated in the 1970s, and it is, by definition, 
racist. Yet many people use it today without realizing its racist 
component, and that’s an important danger we want to address. Today, 
we have more access to data than humans have had in the history of our 
civilization. And now, for the first time, it appears that we also have the 

8. Vanessa Williamson, “Closing the Racial Wealth Gap Requires Heavy, Progressive Taxation 
of Wealth,” Brookings Institution, Dec. 9, 2020, https://www.brookings.edu/research/
closing-the-racial-wealth-gap-requires-heavy-progressive-taxation-of-wealth/. 
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power to modify it, transform it, and extract patterns and information 
from it. But it is not clear that we have the ability to understand our 
results and make sense of the data. How do I know that people use the 
data without paying enough attention to it? In several online tutorials 
and at least one book on deep learning, the Boston Housing Price data 
set is used but not really explained. In most cases, only the first few 
rows (rows 1–3) are listed with explanations of what the features mean; 
the rest of the rows aren’t explained. Instead, they just show examples 
of the vectors of fourteen values. And very little emphasis is placed on 
understanding what those values mean. 

Was this done on purpose, to avoid an embarrassing part of our 
history? A yes answer to this question would be bad, but my guess is 
the answer is no, and unfortunately this answer isn’t much better. It 
shows our willingness to use data without really understanding it and 
that we expect our AI models to be “intelligent” enough to avoid biases 
in the data. But as we have seen in this chapter, the “intelligence” in 
AI is granted too quickly. Our models simply learn patterns from the 
data. If we produce and input data that is biased, our results will be 
biased—and we always produce biased data! 

There is a real danger in deciding that because we can’t understand 
our data, we need to use an AI model to make sense of it. If we 
blindly shovel information into a model and make policies based on 
the results, we are fully answerable for the biases that are perpetuated. 
The responsible approach is to first understand the implications of our 
data, especially the biases buried in it, and then use algorithms to find 
patterns that we humans have trouble discerning.



We are well on our way to having a basic understanding of 
neural networks and how they function. In the previous 

chapter, we were introduced to the MLP (multilayer perceptron). We 
learned a bit about the history of the artificial neural network, which 
helped us grasp why neural networks work and what inspired their 
creation and evolution. The MLP is a powerful general approximation 
function, and it can be used to analyze data for a wide array of use 
cases, from classification problems to different forms of regression. 
In this chapter, we discuss a different architecture of neural networks 
called the convolutional neural network (CNN)—the star of image-
processing algorithms and the backbone of most computer-vision 
systems today. More importantly, MLPs and CNNs are the building 
blocks for the neural network architectures predominately in current 
use. If we can understand MLPs and CNNs, we will have a solid 
foundation for understanding what is happening inside most neural 
network implementations for the foreseeable future. We have already 
seen MLPs; let’s get started on CNNs.
 One of the classical use cases for artificial intelligence is computer 
vision—creating an algorithm that allows a computer to perceive the 
world around it through a camera lens. The development of computer 
vision brings with it varied benefits and applications: security systems 
that monitor live video footage for suspicious activity, manufacturing 
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assembly lines that ensure product quality, and so on. It allows us to 
build autonomous systems that can navigate complex environments 
without bumping into obstacles; think of self-driving cars, pilotless 
airplanes, or rescue robots that can risk harsh conditions and move 
more quickly than humans to reach disaster victims. Computer vision 
may allow us to build medical infrastructure for automating patient 
diagnosis by having a computer analyze large volumes of pathology 
images and thus accelerate the diagnosis process for the long line of 
anxiously waiting patients in overwhelmed health care systems. Some 
researchers believe that in the future we will have companion robots 
that help take care of individuals who live alone. Computer vision can 
help these robots understand their human companions by following 
visual cues and offering the necessary support. 
 There are many practical benefits to computer vision, and we’ll 
continue to examine some of those. But besides that, we spend this 
chapter discussing vision systems because they are so incredibly 
interesting! There is something about vision that fires up our 
imagination. Although vision is quite common in many biological 
systems, there is still a lot that we don’t know about it. The human 
vision system is probably the most complicated vision system ever 
produced, and although researchers have been successful in unveiling 
some of its mysteries over the past few decades, much of it remains 
hidden in the brain’s visual cortex like a wonderfully kept secret. This 
combination of complexity and the unknown makes it a fascinating 
subject, whether we’re studying biological or artificial systems, and as 
we will see, as we slowly chip away at the unknown and unveil the 
hidden machinery, we often find beauty and elegance (with a little bit 
of chaos sprinkled in for good measure). 
 We begin our discussion of computer vision by breaking down 
one of the most successful artificial vision algorithms ever created by 
humans: the convolutional neural network. We will peer into each layer 
of the CNN and inspect what operations are taking place inside. This 
process will help us demystify further the algorithmic aspect of the 
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neural network. We will see that although it bears a complicated name, 
it consists of simple and systematic operations. By the time we are done 
discussing vision, we will have laid the foundation for understanding, at 
least at a surface level, what makes artificial neural networks powerful 
and will start getting an inkling for their limitations, as well. We will 
compare computer vision and biological vision and explore a fascinating 
phenomenon that happens with artificial neural networks. It turns 
out that our artificial neural networks exhibit many properties that 
are also found in some biological visual systems, but incredibly, these 
properties were not purposefully built into the artificial neural network 
by the designer. These are what we call emergent properties, which arise 
naturally in complex systems and might be a side effect of stumbling 
onto fundamental truths (more on this later). By following the thread 
of these emergent properties, we are going to discuss the similarities and 
differences between biological and computer vision as it exists today.
 Although the need for computer vision is well established, and its 
use has become more ubiquitous in recent years, it wasn’t always obvious 
that we could create a set of discrete steps that would let a computer 
detect objects in an image (those steps are essentially what a CNN is). In 
fact, for a long time, this seemed like an intractable problem. It may be 
difficult for us to realize how truly difficult a problem computer vision 
is—because we are used to seeing and recognizing objects! Distinguishing 
between different objects is something we can do effortlessly. But let’s step 
back briefly and think about how a computer might see the world. In our 
human eyes, vision begins with photons of light entering the cornea. In 
computer systems, vision begins with pixels. 
 A camera snaps a picture of the world, and the picture is a 2D 
image. The computer sees a 2D image as a group of pixels. Let’s 
consider an image of a cat (the “cat” has become the “Hello, world!” 
of computer-vision examples). Setting aside computers for a minute, 
suppose we meet someone from a different planet, and we want to 
explain to them what a cat looks like. First, we show them a picture of 
a cat lying on a bed. In this picture, the cat is prominent; it takes up a 
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large portion of the image. It is facing the camera with two perfectly 
triangular ears pointing up, symmetrically placed on either side of the 
head. The cat has golden fur with dark stripes running the length of 
its back. Let’s further assume that this extraterrestrial (ET) creature 
understands things in a quite literal way. To her, “cat” now means 
an object that has ears that are triangular, perfectly symmetric, and 
pointing straight up. She is building a set of simple rules that define 
“cat” for her. The fur of a cat must be golden and striped black. Now 
we show a second image of the same cat to our ET friend. In this 
picture, the cat is leaping in the air with its tail pointing up. The head 
is slightly turned so that only one ear is partially visible. With this new 
image, our ET friend is lost! She does not know what she is looking 
at. First of all, there is a tail in this picture! The picture that we used to 
train her on what a cat looks like had no tail because in that image the 
tail was hidden. Also, in this image the cat only appears to have one ear, 
and it’s not perfectly triangular and facing the camera. 
 If this sounds like a ridiculous example to you, it is because, again, 
you are used to interpreting objects visually. But the ET in our example 
does not have the same well-developed visual capabilities that humans 
do. Instead, she is building simple rules based on the one example we 
showed her and the fact that we told her that that’s what a cat looks 
like. She does not have the ability to extrapolate from a single cat in 
one position to what that cat might look like in different positions 
and know that it is still the same cat. This is exactly the problem that 
computer vision presents. The computer is an infuriatingly literal friend. 
We start with an image and must build a set of rules, or check marks, 
that a computer can use to determine whether the object in the image is 
a cat. In fact, the computer-vision problem is even larger. You see, I did 
a quick sleight of hand with my ET example. To simplify my example, 
I gave the ET powers to differentiate between the object we wanted to 
identify (the cat) and the background (the bed). But with computer 
vision, the computer doesn’t even know where the foreground ends and 
the background begins!
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 We can generalize on the previous cat example by referring to 
the problem of identifying the cat in different positions as the class 
invariance problem. A computer-vision algorithm, if it is to be useful, 
must be able to recognize different classes of objects while allowing for 
each class sample to look different, to be of different sizes, and to be 
seen from different viewpoints and at different depths in the camera’s 
field of view. Consider different breeds of cats: Persian, Maine coon, 
British shorthair, American shorthair, ragdoll, sphynx. An algorithm 
trained to recognize “cats” must be able to recognize a picture of a cat 
even when there is wide variability in how cats of different breeds look 
and how the same cat might look from different viewing angles. 

TACKLING THE COMPUTER-VISION PROBLEM:  
TOP-DOWN APPROACH 

When considering the problem of building a vision system, there are 
two different approaches we could follow. In the top-down approach, 
we start by asking ourselves what the elemental qualities common to 
all cats are (cats or elephants or camels—whatever it is that we are 
trying to identify). Once we identify the visual cues that signal “cat” 
to us, we can then proceed to construct a set of rules we can use to 
teach an artificial system to identify cats, so long as the images it is 
inspecting exhibit the qualities that we have associated with cats. In 
artificial intelligence, we call these qualities features (sound familiar?). 
 We can think of classical artificial intelligence algorithms as decision 
trees following a hierarchy of rules: if this happens, then that happens, 
otherwise something else happens; and from these two branches, 
subsequent rules and decisions can follow. Now consider building a 
computer-vision algorithm to identify cats in an image using our top-
down approach. We start by writing down a set of simple rules that 
describe a cat. First, we will probably describe the edges of the cat—in 
other words, the boundary between the cat and the background. We 
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will definitely note the triangular shape of the ears, which are a very 
prominent cat feature. Our rules will describe a set of edges that form 
triangles without a base, like this ^ ^. We might create different versions 
of these edges to cover multiple viewing angles. Most cats also have tails, 
so our rules must include edges that follow the shape of tails. We will 
continue this process and describe the torso, the legs and feet, and the 
iconic sharp ellipses of the eyes. Once we have constructed enough of 
these rules, we can build an algorithm that analyzes images and tries to 
find as many of these edges as can be found in the image. If enough edges 
are found, we might conclude that we have a cat in the image.
 I have just described a very simple algorithm using a concept known 
as feature engineering. Feature engineering is the process of manually 
either selecting or constructing a set of features that describes the class of 
objects we want to identify. We construct a list of features and proceed on 
a feature-matching expedition through our data set. In each data sample 
(each image, in this case) we try to match as many of our engineered 
features as possible, and if enough features are matched, we assume we 
have found our object. I say “if enough features are matched” because 
we need to use a threshold of features that we want to match before 
declaring an object found. If the threshold is too low and we return a 
match after a single feature has been found, we might realize that our 
algorithm is very noisy and would return many erroneous matches.
  For example, suppose that in our list of relevant cat features, we 
have the triangular ears ^ ^. If our algorithm predicts “cat” for every 
image that contains that feature without considering other features, we 
may be in for a few surprises as that shape is not found exclusively in 
cats. For example, the serrated edge of a handsaw has similar shapes; 
so do the shingles of some rooftops. To determine that a specific object 
has been found in an image, our algorithm has to find a collection of 
features belonging in our object’s class. The number of features that 
must comfortably be matched to achieve an acceptable success rate 
is the threshold that we described. A low threshold results in many 
false positives—incorrect predictions for cats—while a high threshold 
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might result in an algorithm that is biased toward the features we 
engineered and may miss many examples of cats where all their features 
don’t exactly match our definitions (false negatives).
  Feature engineering was one of the earliest techniques used in 
artificial intelligence algorithms, and it is still used in some cases today 
as it is much simpler and computationally less intensive than our current 
state-of-the-art approaches. Face-tracking algorithms that put a green 
bounding box around faces in the viewing screen of digital cameras 
still use feature engineering. They use simple features describing the 
shapes of eyes, noses, and the average distance between the eyes and the 
nose of most individuals. Wherever those features are matched in an 
image, they calculate a bounding box around the face. The downside 
of feature engineering is that it is very time-consuming and requires 
very experienced and well-trained engineers to design features that are 
specific enough to properly describe the subject but generic enough 
to allow for class invariance (the features must work for different 
shapes of faces and at a range of depths from the lens). This means 
that only a small list of the most prominent features can be created, 
which leads to algorithms that can work quite well in some controlled 
scenarios: for example, face detection on a camera where you know the 
subjects will typically be facing the lens head-on and at a reasonably 
predictable depth. But in general settings where the conditions aren’t 
controlled, these algorithms prove too rigid for their predictions to 
be trusted. Lastly, the biggest limitation to pure feature engineering, 
and which binds it forever to specific and controlled environments, 
is that for every new class of items we want the algorithm to identify, 
we must start from scratch by designing new features for the new class 
of objects. This makes this class of algorithms very hard to scale to 
complex environments. Consider the difficulty in constructing a vision 
system for a self-driving car if we must handcraft the features of each 
obstacle a car might encounter in its lifetime (the roads, every type of 
vehicle, pedestrians, signs, trees, animals, random objects on the road, 
etc.). It would be impossible.



84 Is tHE ALGorItHM PLottInG AGAInst us? 

TACKLING THE COMPUTER-VISION PROBLEM:  
BOTTOM-UP APPROACH

The second approach to artificial vision systems is more closely related 
to biological vision systems. This is what we call the bottom-up 
approach. A biological vision system—specifically, the mammalian 
vision system—starts with light entering the eye. As different photons 
enter the eye and hit specific parts of the retina, the eye and the brain 
begin to construct a hierarchy of features that eventually leads to our 
understanding of the world we see. In computer vision, these points 
of light are the pixels that make up an image. Our goal is to devise 
a method by which our algorithm can construct a set of features by 
starting from the pixels. Ideally, the learning process of our algorithm 
will be generic so that for any class of objects, the learning process will 
begin with the pixel and proceed from there. Intuitively this seems like 
a less restrictive approach compared to feature engineering. With the 
bottom-up approach, we do not decide which features are important 
for any class of objects. We let the algorithm figure that out on its own. 
This means that the algorithm is free to see beyond our human box 
and discover its own way of seeing the world. As we let the algorithm 
itself learn to see, we might, paradoxically, learn more about our own 
vision than if we injected the algorithm full of our biases. An important 
aspect to note of feature engineering is that every engineer will design 
different features for describing the same thing. Shouldn’t features 
that describe the world be determined by the data itself and not by 
the subjective judgment of an individual? Shouldn’t vision rely on a 
set of fundamental truths about the world? The bottom-up approach 
attempts to solve this problem by removing the human from the 
feature-selection process. 
 Let’s recall our cat-recognition experiment. If we wanted to 
implement a systematic way of extracting the outline information of a 
cat, how would we go about doing it? It turns out there are mathematical 
operations that can do exactly this. These fall under the image processing 
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area of computer science. We can take an image of a cat and generate 
a new image containing only the outline of the cat. That is, we can 
remove all the extra information depicting the cat (color, fur texture, 
etc.) and leave just the edge information, simply by using math. For 
each pixel in the cat image, we update the pixel value based on a special 
3 × 3 filter matrix. The process of updating the pixel values in this 
manner can result in a new image containing just edge information. If 
this is not clear, don’t panic; we will explain it with a detailed example.
 These image-processing operations are called convolutions,9 or 
filtering operations. To carry out convolutions, we start with an image. 
In image processing (and computer graphics in general), we need to 
interpret the image as a mathematical construct. In other words, we need 
to figure out a way to interpret the image as a collection of numbers 
on which we can operate. Images are organized as arrays of pixels. That 
is, an image consists of a two-dimensional surface with a resolution of 
N-width × M-height pixels. An image that is 100 × 100 pixels has 100 
pixels per row and 100 rows of pixels. Each pixel in the image has a value 
associated with it, and this value ranges between 0 and 255. If the image 
is black-and-white, we say that the image only has one color channel. For 
single-channel images, each pixel in the image has a single 0–255 value 
associated with it. This value describes the light intensity of the pixel. If 
the value is 0, the pixel is off and appears as black. If the value is 255, the 
pixel is fully lit and appears as white. For any value between 0 and 255, 
the pixel appears as a shade of gray. 
 If, instead of a black-and-white image, we are dealing with a 
color image, we say that the image has three color channels: red, 
green, and blue. In this case, each pixel has a 0–255 value that defines 
the color intensity for each channel. For our purposes, we will assume 
that we are working with black-and-white images because it makes 
the examples easier. But note that for color images, the process is the 

9. While often referred to as “convolutions,” these operations technically are correlation 
operations. A true convolution operation requires flipping the filter kernel first. 
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same. The only difference is that the operations are performed for 
each color channel.

Now that we understand how images can be interpreted 
mathematically, let’s consider a black-and-white image of a cat, and let’s 
assume the image is 100 × 100 pixels. We will interpret the image as an 
array of 100 × 100 values. Next, we perform an operation that’s known as 
edge detection. This is a well-known image-processing operation that takes 
an input image and transforms it into an image of the same dimension 
where all pixels except for the edges of objects have been turned off—that 
is, they appear black (fig. 2.1, center panel). To extract edge information 
from an image, we take a specially constructed 3 × 3 matrix called a filter, 
or convolution kernel (3 × 3 is a common size, but larger sizes, such as 5 × 
5, 7 × 7, and so on, may also be used), and use the edge detection filter 
matrix described below. We overlay the center cell of the matrix over a 
pixel in the input image and calculate a weighted sum across the pixels 
covered by the filter matrix. This becomes the new value for the pixel in 
the output image. If we perform this operation over every pixel in the 
input image, the result is a new image showing only the edges of the 
figures in the original image (fig. 2.1, center panel). 

Figure 2.1  Left, an input image, Leonardo da Vinci’s Lady with an Ermine; center, the 
result of an edge detection operation; right, the result of a Gaussian filter operation. 
Both operations were performed following the process described in figure 2.2. 
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 Now let’s look at figure 2.2 and see in more detail what we mean by 
a weighted sum using the 3 × 3 filter matrix. To perform edge detection 
on this 12 × 12 image, we use the edge detection filter matrix. We 
overlay the filter matrix over the top left 3 × 3 corner of the image and 
perform the following operation: 1*(–1) + 3*(–1) + 10*(–1) + 18*(–1) 
+ 88*(8) + 43*(–1) + 6*(–1) + 2*(–1) + 55*(–1) = 566. This gives us 
the value of the first pixel of the new image. Since this value is 566 and 
our pixel-value range is 0–255, we clamp the value to 255.10 Next, we 
slide the 3 × 3 filter matrix to the right by one pixel and perform the 
same operation again: 3*(–1) + 10*(–1) + 0*(–1) + 88*(–1) + 43*(8) + 
23*(–1) + 2*(–1) +55*(–1) + 65*(–1) = 98.
 This gives us the pixel value of the second pixel in the new image. 
We can continue to slide the filter matrix this way until we reach 
the right edge of the image. We then move the filter matrix one row 
down and start from the leftmost pixel again. By the time we reach 
the bottom right corner of the input image, we will have produced 
an output image showing only the edge information of the original 
image. At this point, our resulting image will contain only the edge 
information of the input image. If instead of edge detection, we wish 
to perform a blur operation, we can use the Gaussian blur filter in the 
same manner and then divide each resulting value by 16: 

1*1 + 3*2 + 10*1 + 18*2 + 88*4 + 43*2 + 6*1 + 2*2 + 55*1 = 556 

556 / 16 = 34.75

In this case, we round up, and the first pixel in the new image carries 
a value of 35. (In the next section, we discuss the importance of the 
values in the filter matrices.)

10. Clamping in this context means maintaining the value within a specific min-max range. In 
this case, our range is 0–255.
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Figure 2.2  Left, a 12 × 12 pixel image with the associated value for each pixel; above 
right, an edge detection filter matrix; below right, a Gaussian blur filter matrix. 

 Isn’t this amazing? By simply performing a set of simple 
multiplications and additions between a small matrix and the pixel 
values in an image, we can remove most of the information from the 
image and leave just the edge information! Furthermore, if we plug 
another set of specially prepared values into the filter matrix, we can 
produce a blurred image (or sharpen a noisy image). To produce 
different effects, all we need to change are the values in the filter matrix. 
The mathematical operations are exactly the same.
 The ability to systematically extract edge information from an image 
can be useful for two reasons. First, as previously discussed, we could 
break down the edge information to construct a feature list for images 
we want to identify. Second, if we want to perform object tracking, all 
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we really need is the outline of an object in a scene. The color or texture 
of the object adds extra information that will take time and resources to 
process, but color and texture information is not relevant to the location 
of the object in a scene. To perform object tracking, it’s enough to know 
the outline of the object we want to track. For this reason, edge detection 
is often used as a preprocessing technique for various classical image-
processing and computer-vision algorithms. 

CONVOLUTIONAL NEURAL NETWORKS

Considering what we just learned about convolutions and their ability 
to extract information from images in a systematic way using a filter 
matrix, we might ask: What other filter matrices are there? And what 
other sorts of features can we extract from images in our quest to create 
computer-vision algorithms? In traditional image processing, the 
values inside the filter matrices were calculated following mathematical 
formulas and theorems devised by mathematicians and computer 
scientists. These had to be calculated with purpose; after all, they are 
extremely important, and the values inside the matrices determine 
whether the end effect is edge detection, blurring, or some other 
operation. Neural networks changed all of this.
 The convolutional neural network is a neural network architecture 
based on a collection of filter matrices much like the ones we just 
discussed. But as you might have guessed, those filter matrices are not 
preprogrammed. Instead, in true AI fashion, the values of the filter 
matrices are discovered during the training process. A powerful CNN 
contains a robust collection of filter matrices that extract information 
useful in determining the content of an image.
 CNNs are the classic neural network architecture for computer 
vision. As we saw in the previous chapter, CNNs are not the only 
class of neural networks that can be used for image analysis. Indeed, 
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MLPs are also capable of analyzing and classifying images into different 
categories of objects. The advantage of CNNs is that they greatly 
reduce the size of the model required to process images of increasing 
dimensions. The reason for this is that with MLPs, each pixel in the 
input image must have a connection to a neuron in the first layer, 
along with the accompanying weight for that connection. The larger 
the input image, the more connections required. But with CNNs, the 
weights for the neurons are shared across the entire receptive field of 
the neuron. That is, the same 3 × 3 filter matrix is reused many times 
to process all pixels in the image.
 We begin by describing the CNN via a top-down approach. Initially, 
some concepts may be unclear and not fully developed, but we need to 
start somewhere. We base our CNN description on a classic architecture 
called VGG-16. VGG stands for Visual Geometry Group, the research 
group from Oxford University who first proposed the architecture. 
When it was introduced, it achieved state-of-the-art performance for 
image classification tasks on a number of popular research data sets, and 
it is still the backbone for many computer-vision tasks.
 The VGG-16 architecture consists of thirteen convolutional layers 
followed by a standard three-layer MLP (a fully connected neural 
network similar to the ones described in chapter 1). The convolutional 
layers are a collection of filter matrices much like the one in our edge 
detection example. The task of the convolutional layers is to extract 
visual information, or cues, from the input image. The role of the MLP 
section is to classify the features extracted by the convolutional portion.
 To understand how a CNN executes, let us first assume that our 
neural network has been trained, and it is ready to be used. That is, 
all the filter matrices in its layers have been programmed with useful 
values. To process an input image, we present the image (in this case, 
a 224 × 224 pixel image) to the first layer. In figure 2.3, we can see 
that convolutional layer 1 consists of sixty-four 3 × 3 matrices. For 
each 3 × 3 filter matrix, we process each pixel in the input image by 
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the 3 × 3 filter, sliding the filter over each pixel across the input image, 
as described above. Since there are sixty-four such filters in this layer, 
the output of this first layer is sixty-four 224 × 224 pixel images. We 
call these images feature maps. The term comes from the fact that these 
images are the result of filtering operations aimed at extracting features 
from the original image. The process is the same as what we described 
earlier with edge detection or blurring filters; except in this case, instead 
of a single filter, we have sixty-four filters.
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Figure 2.3  The VGG-16 neural network architecture consists of several convolutional 
layers, where each layer is a collection of 3 × 3 filter matrices. Layers 1 and 2 both contain 
collections of sixty-four 3 × 3 filter matrices. The output of these two layers is a volume 
of sixty-four images, called feature maps, the same size as the input image. Author’s 
rendering based on Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional 
Networks for Large-Scale Image Recognition” (poster presented at the Third International 
Conference on Learning Representations, San Diego, CA, 2015), https://doi.org/10.48550/
arXiv.1409.1556.  

 The output of layer 1 is a feature map volume of sixty-four 224 
× 224 pixel images. These images become the input to layer 2, which 
consists of another sixty-four 3 × 3 filter matrices. The input to layer 2 
now gets processed by these matrices in a similar manner to layer 1.11 

11. This is a simplified explanation of the process of performing a filtering operation over an 
input volume. The filters of CNNs have a channel dimension as well, and the channel 
dimension must match the channel dimension of the input volume. This means that layer 
2, in fact, consists of sixty-four 3 × 3 × 64 filter matrices, where each image in the sixty-
four-image input volume is processed by a different matrix in the 3 × 3 × 64 volume. Once 
the input volume is processed by a 3 × 3 × 64 filter, a single feature map is output. 
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The output of layer 2 is also a feature map volume of sixty-four 224 × 
224 pixel images. These images will contain features that are different 
from those output by layer 1.
 As we progress deeper into the VGG-16 architecture, layers 3 to 
13 are similar to layers 1 and 2; what changes is the number of filters 
per layers. Layers 3 and 4 consist of 128 filter matrices. Layers 5, 6, and 
7 consist of 256 matrices. And finally, layers 8 through 13 consist of 
512 filter matrices (fig. 2.4). 
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Figure 2.4  The VGG-16 neural network architecture is divided into a convolutional 
feature-extraction portion and an MLP classifier portion. The CNN section itself 
is divided into blocks of layers of equal numbers of filter matrices, with a MaxPool 
operation between blocks. The final output of this neural network as shown in the MLP 
section comprises 1,000 values. This neural network can classify objects into 1,000 
different categories. Author’s rendering based on Karen Simonyan and Andrew Zisserman, 
“Very Deep Convolutional Networks for Large-Scale Image Recognition” (poster presented 
at the Third International Conference on Learning Representations, San Diego, CA, 2015), 
https://doi.org/10.48550/arXiv.1409.1556. 

 As information flows through the different layers in the CNN, 
feature complexity builds. This is because the latter layers extract 
information from feature maps produced by the intervening layers. 
You can think of it as the deeper layers using the features extracted by 
earlier layers and putting those features together to build higher-level 
concepts. Specifically, the difference in complexity means that the early 
layers typically learn to extract edge and color information, whereas the 
deeper layers learn to detect texture and such conceptual information 
as eyes or whole faces or even motion. 
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 Between blocks of convolutional layers, an operation takes place 
that’s very common to CNNs—the MaxPool operation (fig. 2.4). 
For each 2 × 2 pixel window in each feature map, the highest value 
is chosen, and the rest are discarded (see fig. 2.5 for an explanation). 
This has the immediate effect of reducing the size of the images by 
half for subsequent processing, which has the benefit of speeding up 
the computations in the latter layers. Reducing the size of the images 
by half means that the feature map sizes after the first MaxPool 
operation go from 224 × 224 to 112 × 112 pixels. The second  
MaxPool operation reduces it to 56 × 56 pixels. By the time we get to 
the end of the CNN portion of the network, the size of the feature map 
volume is 7 × 7 × 512 pixels—that is, 512 images of 7 × 7 pixels each. 
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Figure 2.5  The MaxPool operation serves to reduce the size of the data that must be 
processed in each block. It is performed by selecting a 2 × 2 pixel window on the top left 
of the input image and then selecting the pixel with the highest value in that window. 
This pixel is kept and becomes the first pixel in the output image; the other pixels are 
discarded. We then slide the 2 × 2 pixel window to the right and continue processing 
the input image. In this example, our first 2 × 2 pixel window contains the following 
pixel values: 1, 3, 18, 88. The highest value is 88, so we keep this pixel and discard the 
rest (right). The next window contains: 10, 0, 43, 23. The highest value is 43, so we 
keep this pixel and discard the rest. Thus, we reduce the input image from 12 × 12 
pixels to 6 × 6 pixels.
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 The intuition behind max pooling derives from interpreting 
the values in each 2 × 2 region of the feature maps as indications 
of important features in the data. By selecting the largest value and 
preserving it for subsequent processing, we retain the most important 
feature in the 2 × 2 window. As with many subjects related to artificial 
neural networks, however, the intuition behind certain operations is 
sometimes added as an ad hoc explanation after a concept has been 
developed. In reality, much of what we do with neural networks is 
done because it was empirically found to work. In the case of MaxPool, 
the main benefit (and what has influenced the implementation of 
this operation) is reducing the image size so that subsequent layers 
have less data to process. Once a concept like this is implemented, 
it is tested against well-known data sets and different neural network 
architectures. If the concept works, it is kept, and other people 
incorporate it into their research. This means that we often don’t end 
up with a theoretical proof of why or how it works. If this sounds like 
a less-than-rigorous approach to science, in some respects it might be. 
The benefit of this approach is that the field of artificial intelligence 
has experienced an unprecedented explosion in results and solutions 
in recent years. Whether this is a good thing or a bad thing depends 
on what our ultimate goals are. If the goals are to advance the AI 
field and solve discrete problems like image classification or natural 
language processing, clearly this approach is working. If the goal is 
to fundamentally understand “intelligence” and build a model of the 
human brain, I suspect we will need a more rigorous approach where 
we fundamentally understand the gains and losses of each operation: 
For example, why does MaxPool really work, and what is the cost of 
the values that we discard in a more generalized sense?
 The last layer in the CNN just before the classifier section 
outputs 512 7 × 7 pixel feature maps. Before proceeding to the MLP 
section, we take each 7 × 7 pixel image (or feature map), unroll it into 
a single flat vector of 49 values, and attach each of the 512 vectors to 
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the end of the previous one to generate a 25,088-value vector (7 × 7 
× 512 = 25,088). When we present this vector of 25,088 values to the 
classifier, this is the data it uses to predict the class of the object in the 
original image. 

Note: we omitted a slight complication in the operations of the 
CNN. For each filter neuron, at each processing step where we filter 
a 3 × 3 input volume, the result of the filtering operation is further 
processed by a nonlinear function f. After all, a CNN is still a neural 
network. Each 3 × 3 filter matrix is itself a neuron, and as we know, 
neurons require an activation function to decide when to fire. In the 
case of the VGG-16 architecture, the nonlinear function f used is a 
ReLu function. Recall that this function takes an input value, and if 
the value is negative, the function outputs 0; if the value is positive, it 
returns the same input value. Suppose that the result of our filtering 
operation is –4; then, f(–4) = 0. That is, the value produced by the 
neuron will be 0. If the result of our filtering operation is 4, f(4) = 4. 
The value produced by the neuron will be 4. 
 The filtering process in the CNN extracts and combines 
information from the feature maps in a manner similar to the edge 
detection example and creates a new set of images (i.e., feature maps) 
consisting of a specific set of features. These may be edge information 
or texture information, and the deeper we get into the neural network, 
the more and more complex the extracted features become. If the neural 
network was trained to detect animals or human faces, in the deeper 
layers, we might find neurons that are sensitive to higher-level concepts 
like eyes, ears, or whole faces. If we think of the filtering process as 
similar to extracting some elements out of a bucket of sand using a 
series of sifters, we can imagine that each subsequent sifter lets finer-
grained material through. In the end, what we are left with is a distilled 
version of the bucket of sand that we started with. Thus, we can say 
that the final output of the convolutional section is a distilled version 
of the original image. If the neural network was trained correctly and is 
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working, the output consists of a compressed, smaller, and more potent 
version of the original input image.
 Once we produce that distilled version of the original image (in our 
case, the original image has 50,176 pieces of information, or 224 × 224 
pixels), this distilled version is sometimes called a latent representation, 
or latent vector. In our example, the latent representation has 25,088 
pieces of information. This represents a reduction by 50 percent in the 
amount of data that will be used to classify the object in the image. 
Remember, the CNN section does not perform classification. It simply 
extracts information from the image in the form of feature maps and 
combines this information into a latent, or distilled, version of the 
input image. The latent representation then gets processed by the 
classifying section, and it is this section that makes a prediction as to 
what class of objects is hiding in that latent representation.

You may be wondering about the intuition that the latent 
representation contains all the information we need to make a prediction 
on the object we are trying to detect. After all, how do we know that by 
losing 50 percent of the original input we haven’t lost some vital part of 
the object? We began this chapter with the example of trying to detect a 
cat in an image. In one of the images we discussed, our cat was lying on 
a bed. If we think of that image as a collection of pixels and each pixel 
as a unique piece of information, how many of those pixels are vital to 
our understanding that there is a cat in that picture? Put another way, if 
we opened that image in Photoshop and deleted or changed a few pixels, 
would we no longer be able to detect the cat in the picture? It turns out 
that if our goal is to predict “cat,” most of the information in that image 
is superfluous. If we removed the bed and all the background from the 
image, we would still be able to detect the cat. In fact, if we removed all 
the pixels that describe the fur and texture of the cat and left just the edge 
information, we would still be able to detect the cat in the image. 
 Hopefully, we can now start to see why compressing the original 
image before classification might not be such a bad idea. For any given 
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image, there are always pixels that could be removed without losing 
vital information about the subject. The goal of training our CNN is 
to have the algorithm learn which information is OK to remove and 
which isn’t. This in part depends on what our goal is in our use case. 
For example, if we want to detect cats in images but we are not worried 
about which breed of cats, all we really need our algorithm to do is 
encode information about the shape of cats; texture information isn’t 
as important. But if we decide that we want our algorithm to detect 
not just the shape of the cat but also whether it is a Siamese or a Bengal 
cat, then encoding texture information in the latent vector might be a 
good idea. This makes sense because different breeds of cats also tend 
to have different colored and textured furs. When we are discussing AI 
concepts, we need to always keep our goals in mind. In other words, 
what is it that we are asking the algorithm to do? As we will see, when 
we train our algorithms, they are trained to meet the goal that we set 
out for them. So if our goal is not well defined, the algorithm will not 
meet our asks, just as if we train a CNN to detect the general shape of 
cats, we cannot expect it to also detect breed. 

USE-CASE EXAMPLE

Let’s see how we might employ our CNN. Suppose that we are tasked 
with creating a computer-vision system for a sorting facility. We want 
a machine to sort a list of artifacts into different boxes. To do that, 
the machine needs to distinguish between different classes of objects. 
In our example, the machine needs to sort through different types of 
batteries: 9V, AAA, AA, and button batteries. So we have four classes 
of objects that our system needs to recognize. This means that our 
VGG-16 neural network will have four different output channels, one 
for each class. Note that in figure 2.4, there are one thousand different 
outputs. This is because the classic VGG-16 neural network was trained 



98 Is tHE ALGorItHM PLottInG AGAInst us? 

to recognize one thousand different classes of objects using the popular 
ImageNet data set, which contains over 14 million images. The output 
layer can be modified, however, to output as many channels as there are 
categories in the problem we are trying to solve. 

So how does our automated sorting machine work? First, it uses a 
camera to take a picture of the object in front of it. The image is then 
presented to the neural network, which processes it and outputs a set 
of probabilities spread across the four output classes. Table 2.1 shows 
that the neural network has output classes 0, 1, 2, and 3, one for each 
class of object it needs to identify.

Table 2.1  Four Classes of Batteries our neural network Must Identify

Class label Class

0 9V 

1 AAA

2 AA 

3 Button

 When the assembly line starts running and brings a set of batteries 
for our sorting robot to distribute among different battery bins, the 
camera snaps a picture. The first item to be sorted is a 9V battery. The 
image is presented to the VGG-16 neural network, which outputs a 
prediction for which type of battery it believes it is. On a well-trained 
neural network, the outputs might look the ones in table 2.2. 

Table 2.2  Probability outputs for Each Predicted Class

Predicted class Prediction

0 0.98

1 0.01

2 0.007

3 0.003
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 In table 2.2, the prediction represents the neural network’s 
confidence, as a probability, that the item in the image belongs to the 
class represented by the output class. So here we see that the neural 
network calculated a 98 percent probability that the image is a 9V 
battery, a 1 percent probability that it’s a AAA battery, and so on. Note 
that since we are discussing probabilities, the sum of the output values 
must equal 1 (100%). We have just seen how CNNs communicate with 
us. It’s really very simple. They output a set of probabilities through their 
output channels, and we pick the highest probability as the network’s 
prediction. In practice, the difference between the predictions across 
the output channels isn’t always this stark. For example, it is possible 
that for some images of AAA batteries, at certain viewing angles, the 
predicted difference between a AAA and AA classification is much 
closer, like in table 2.3. 

Table 2.3  Probability outputs Conveying a neural  
network’s Lower Confidence Level on the Correct Classification

Predicted class Prediction

0 0.025

1 0.65

2 0.32

3 0.005

In table 2.3, we see a 65 percent probability that the battery is 
a AAA battery and a 32 percent probability that it’s a AA battery. 
We can understand some hesitation on the neural network’s part in 
distinguishing between AA and AAA batteries since they are quite 
similar, with overall size being the main differentiator. What would 
be surprising is if the neural network were to analyze a 9V battery 
and output close predictions for 9V and button batteries. You would 
intuitively expect that 9V batteries and buttons batteries have features 
that are distinct enough for their predictions to be far apart.  
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Whether we are classifying images or numerical data samples, as 
we did in the previous chapter, the concept remains the same: Neural 
networks have one output channel per class (if we need to classify ten 
different items, the network will have ten different output channels). 
The network outputs a probability that the item we are trying to 
classify belongs in each possible category. We then choose the output 
channel with the highest probability and say that the image belongs in 
the class that is represented by that output channel. In principle, this 
is no different than the simple MLP we discussed in the last chapter. 

TRAINING AND ARCHITECTURE DESIGN

At this stage, you should have a good understanding of what the 
convolutional section of a CNN does (extract a set of important 
features from an image) and how it does it. It is just a series of 
operations, mostly multiplications and additions (with a nonlinear 
function processing the result of each weighted sum), which have the 
effect of extracting specific elements from the input image. These in 
turn are key to detecting the subject of the image. That is exactly why 
this process is called filtering: just think of how adding different filters 
to a camera lens reveals different aspects of our world, which might be 
harder to see with the naked eye. 
 There are still two important pieces of information we have not 
discussed. The first one is how we decide on the architecture of the 
CNN. For example, why does VGG-16 have thirteen convolutional 
layers, and why does the third block have layers of 256 neurons while 
the fourth and fifth blocks have 512-neuron layers? How do we know 
we have enough convolutional blocks? How do we know we’re not 
missing a few blocks? The second piece concerns how we program each 
3 × 3 filter in each layer. How do we select the numbers that should go 
in each cell of the 3 × 3 filters?
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 Unfortunately, deciding on a CNN’s architecture is not a simple 
process. There aren’t strict rules for how we choose the architecture 
of a neural network to solve a given problem. There are general 
considerations that can guide the intuition for the number and size 
of each layer. The larger the model, the more trainable parameters it 
has (i.e., the more 3 × 3 filters that must be programmed); the more 
trainable parameters it has, the larger our training data set needs to be. 
Why are the sizes of the data set and the model related? If we have a 
small data set but a neural network with many millions of parameters, 
we might find that our neural network “memorizes” the training data. 
That is, the neural network will follow the training data too closely. 
This is bad because a small training data set may not be a great example 
of the real world, so we are not really preparing the neural network for 
succeeding in the real world if we allow it to “memorize” all the data. 
Similarly, if we have a large training data set but a very small neural 
network, we may not have enough trainable parameters to adjust for 
extracting an appropriate diversity of features from our data set. 
 A simple rule of thumb is to not make the model too large if our 
training data set isn’t large enough. In practice, however, researchers 
fine-tune the shape and architecture of the network simply by trying 
different things and seeing what works. So we might add or remove 
layers until we have a solution that works. Over the last decade, 
researchers have discovered neural network architectures that are better 
suited for particular classes of problems, from computer vision to 
natural language processing to outplaying a chess grand master. Once a 
base architecture is found to work well for a specific class of problems, 
other researchers typically iterate over established model architectures 
and make little modifications here and there until the model works 
for their particular use case. The important thing to understand is 
that there are no commandments that describe how to design a neural 
network to solve a given problem. Instead, we start from an established 
architecture known to work for our class of problems (e.g., classification 
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of human faces or classification of chest X-rays) and then slowly add/
remove layers and blocks until the model starts to perform well.
 Now we can address the second issue. How do we program the 
values in each cell of the 3 × 3 filter matrices? If we remember from 
the edge detection example at the beginning of the chapter, the values 
we put into the filter matrix are very important. If we put in arbitrary 
values, we will get a resulting image that will not contain any useful 
features. It might look corrupted or like random noise. If we put a 
special set of values known to filter edge information, we get a resulting 
image that contains just the edges of the original image (fig. 2.1). It 
should be clear by now that these values do the very important job of 
extracting information from the input image. Our goal is to create an 
algorithm that can extract the right features from an input image that 
can lead to the classification of the subject. This is precisely what the 
training process does. 
 During the neural network’s training process, our aim is to discover 
the values that must be put in each 3 × 3 filter so that the right set of 
features are extracted from our images, which, when presented to the 
classification section of our network, can lead to the correct prediction of 
the object’s class. The reason CNNs end up using so many filter neurons 
is that vision requires a complex system where features are extracted at 
different levels and combined to create higher-level concepts in the latter 
layers. The impressive achievement in the training process is that we 
establish a set of steps that systematically discover a set of filter values that 
leads to the algorithm predicting the correct class to remarkable levels of 
accuracy. All of this without explicitly telling the algorithm what’s special 
about cats or humans or AA batteries! 
 To train a neural network, we begin with a training data set—
which, for a computer-vision algorithm, is a specially crafted collection 
of images and labels. The labels represent what we call the ground truth 
for the class of the image. If we want to train a model to differentiate 
between humans, cats, dogs, and bears, our data set must consist of 
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many images of humans, cats, dogs, and bears. Each image in the data 
set will contain a label that tells our neural network the class of the 
image. As we saw earlier, the label is just a number that we assign to a 
particular class. We could define our training data set to have label 0 
for humans, 1 for cats, 2 for dogs, and 3 for bears. Then every image of 
a dog in our data set will have a label of 2.

Initially, the parameters in the neural network—that is, all the 
values in the 3 × 3 cells of the filter neurons—are initialized with random 
values. Since the values are randomly selected, the neural network isn’t 
very good at extracting useful features from the input images, and the 
predictions are highly inaccurate. But as training progresses, the values 
in the filter neurons get adjusted, similar to how one might slowly turn 
the dial on a radio to tune to a specific frequency. As the filter values get 
adjusted, the neural network gets better at extracting useful features in 
each layer, and the predictions get more accurate.
 To understand exactly how the network parameters are adjusted 
through training, we need to understand what happens when the 
network makes a mistake. To make this example easier to follow, let’s 
scale the problem down to a binary classification task. In honor of the 
great sitcom Silicon Valley, let’s train our network to recognize food 
items as either “hot dog” or “not a hot dog.” In this example, the “hot 
dog” class will have the label 1, and the “not a hot dog” class will be 
labeled 0. Since we are just beginning to train our neural network, our 
parameters all consist of random values. Now we go and present an 
image of a pizza slice to our network. Since the network hasn’t been 
trained, the probability that it will correctly predict “not a hot dog” 
is 50 percent, so let’s go ahead and assume that it makes a mistake 
and predicts “hot dog.” Remember that neural network predictions 
are done using numbers, and in the binary classification example, the 
output will be a value between 0 and 1. An output of 1 represents the 
neural network being 100 percent confident that the image is a hot 
dog. An output of 0 represents the neural network being 0 percent 



104 Is tHE ALGorItHM PLottInG AGAInst us? 

confident that the image is a hot dog (another way to say this is that 
the neural network is 100 percent confident that the image is not a 
hot dog). Any output between 0 and 1 signifies a confidence level for 
the likelihood that the image is a hot dog. Because the mistake we are 
discussing happens during the training phase, the image of the pizza 
slice we are presenting to the network has a label that represents the 
image’s true category. 
 In our example, the neural network has made a mistake and 
predicts a value close to 1 (0.89). This prediction tells us that the 
neural network is 89 percent confident that the image it saw is that 
of a hot dog. The training algorithm happens to know that this image 
is in fact not a hot dog because it knows the true label of the image, 
which happens to be 0 (“not a hot dog”). Now the training algorithm 
needs a method of determining how far its prediction was from the 
true class of the image. We call this method a loss function. The loss 
function provides a way to measure how far the model’s predictions are 
from the ground truth. By knowing how far off the predictions are, we 
can calculate how much we need to change the model’s parameters so 
that next time the predictions will be a bit closer to the ground truth. 
Intuitively this makes sense: if the predictions are very far from the 
ground truth (as in our example, where 0.89 is quite far from 0), we 
need to modify our model’s parameters by a larger amount than if the 
prediction had been closer to the ground truth (say, 0.2).
 In chapter 3, we examine a more detailed example of how the 
parameters of the model are updated; for now, we are just trying to build 
intuitions. We want to understand how in principle a generic algorithm 
can modify parameters of a neural network to progressively make better 
predictions about the data it is analyzing. What we have just learned is 
that the training algorithm uses a set of training images, presents the 
images to the model, gets predictions from the model, measures how 
far the predictions are from the ground truth (which we know because 
a training data set contains labels for all the samples), and uses that 
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information as a measure for how much the model’s parameters should 
be updated. Then, the next time the model is presented with that same 
image, the prediction will be closer to the ground truth. 
 The process for updating the network parameters is called gradient 
descent through back propagation—a very elegant algorithm that 
methodically calculates an amount by which to change each network 
connection (or each cell in the 3 × 3 filter neuron). The network 
connections have values that range between 0 and 1; back propagation 
uses calculus (Remember calculus? It turns out it’s useful after all!) to 
calculate how much a change in each connection contributes to the 
error in the prediction and adjusts each value in the direction that 
minimizes the error. We address this in greater depth in chapter 3.
 An intuitive way of picturing the process of tuning the neural 
network parameters to produce accurate results is to think of a neural 
network as a mathematical function that transforms an input value 
into an output value. A mathematical function such as f(x) = x + y 
transforms an input x by adding y. Suppose we used an input of 4 
and randomly initialized y to 1. The output of the function would 
be 5. Now suppose we want to get the function to output a value of 
9. We need to figure out how to modify y to get our desired output. 
With y initialized to 1, our output is 5, but the desired value is 9. 
We can use a simple loss function (introduced in our “hot dog” / 
“not a hot dog” example) and subtract the desired output from the 
actual output: 9 – 5 = 4. This tells us that our output is 4 points off 
the mark. We can now set y to 4 and try again. This time we get 5 + 
4 = 9, which matches our desired output. In principle, this is exactly 
what we are trying to achieve with the neural network. It truly is a 
mathematical function in very much the same way. The difference is 
that instead of a single parameter y, there are millions of parameters, 
so the process of updating those connections is more complex, and 
the updates must be made more slowly, inching closer to the answer 
over time. 
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LEARNING TO MODEL A DISTRIBUTION OF FEATURES

In our mathematical function example, there is just one right answer: 9. 
So we can update parameter y at once to a setting that gives us the answer 
we want. We can describe f(x) as mapping an input to an output value. 
For example, by setting the y parameter to 4, we have mapped input 5 to 
output 9. In our image classification example, the “right answer” is more 
complicated. We want the network to recognize images of hot dogs, but 
there isn’t just one single image of a hot dog. Think about how many 
ways we can make an image of a hot dog look (yum). And the network 
needs to be able to recognize them all. Put another way: Think of an 
image as an arrangement of pixels. In how many ways can we arrange the 
pixels so that it results in something resembling a hot dog? Considering 
that the resolution of the image is fixed, the answer is not infinite, but it 
is clearly quite large. Therefore, when we update the connections of our 
network, we can’t update them in such a way that it can recognize only 
this one image of a hot dog. It needs to recognize any image of a hot dog. 
 We dive deeper into the mathematics behind the classification 
when we discuss linear and logistic regression. For now, we just need 
to get a feeling for what is happening behind the scenes. In our simple 
function f(x), when we turn the dial on parameter y and adjust its value, 
we are trying to home in on a specific output. With AI algorithms like 
neural networks, what we are trying to do is adjust the many dials 
(millions of dials) of the function, but instead of trying to map a 
specific input to an output, we are trying to map a range of inputs to 
a specific output. We can think of every class of objects we are trying 
to classify as consisting of samples that share common elements. These 
are the attributes that determine whether they belong to that class. 
For example, we might have ten images of different-looking hot dogs, 
all of which are still recognizable as hot dogs—just like we can have 
ten images of different cats that share enough commonality to still be 
recognized as belonging to the class “cats.” 
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 Consider this: two different images of a hot dog may look very 
different from each other, but we still know they are not so different as 
to be confused with a cat. Remember that images are arrays of pixels, 
and pixels can be interpreted as numerical values. This allows us to 
consider an image as a vector in some multidimensional space where all 
possible images of hot dogs point in some similar direction. Similarly, 
all images of cats would consist of vectors that point in roughly the 
same direction. These vector groupings we call distributions, because 
the samples are arranged, or distributed, close to each other in some 
hyperspace. When we assign a class to a group of samples, we are 
determining that they belong in the same feature distribution. The role 
of an AI algorithm is to learn the shape and location of the distribution 
in the multidimensional vector space where all things exist. 
 All right, now we have gleaned enough information to gain access 
to the secret behind the madness. The power of neural networks is that 
they learn to model the distribution of features for the classes they are 
trained to classify. By learning the shape of the feature distribution for 
each class of samples, they learn to map a range of possible inputs to each 
output. This is what makes it possible for a neural network to function 
beyond training. That is, once the neural network is trained, it can 
classify brand-new images it never saw during training. Neural networks 
are not matching algorithms that store a database of known images and 
later reference them. Neural networks learn a space of possibilities for 
the features that define an object’s class. Later, when presented with a 
brand-new sample, they can check which of the learned distributions 
more closely resemble the features in the new sample and thus classify it. 
 It is important to note that the very quality that makes neural 
networks powerful can be a source of weakness. You see, learning the 
distribution of features for a class of samples is a powerful technique 
because it means that for unseen data, the network only has to check 
whether the new sample exists in the same distribution space. This 
is a fancy way of asking, when we interpret the new input image 
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as a vector, whether that vector is pointing in roughly the same 
direction as one of the classes of objects the network is trained to 
identify. The downside is that the network has learned the shape of 
the distribution based on the training data. If the training data set is 
not large enough, or if it is biased toward some population sample, 
then the learned distribution will not match the real world, and the 
model will perform poorly outside the lab environment. 

For example, suppose the neural network is trained to identify 
cats using only images of Siamese cats, and we later ask it to identify 
an image of a white Persian cat. These two cat breeds are distinct 
enough that the neural network may not find that they belong to the 
same distribution. To train a neural network to be robust enough 
to recognize any cat image presented to it, we must train it against 
a data set consisting of thousands of images of all cat breeds. The 
less robust the training data set is, the more limited the learned 
distribution will be, and therefore, the more mistakes we can expect 
in a production environment. 
 Suppose that the neural network performs quite well at 
recognizing cats in general. What if we wanted to train it to recognize 
different breeds of cats? The training process remains the same, but 
the data set would need to change. This is a beautiful quality of 
neural networks. To train the neural network to recognize different 
classes of objects, we simply need to change the training data set. 
The model and the training algorithm remain largely unchanged. To 
teach the network to recognize different breeds of cats, we would 
require a data set that contains thousands of images of the different 
breeds of cats we want to identify. The neural network can then learn 
the distribution of features of each cat breed. But beware! If any one 
class of cats is underrepresented in the training data set, the learned 
distribution will be a poor match for the real distribution of features 
for that class, and the neural network will not accurately represent 
that class. 
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ARTIFICIAL VS. BIOLOGICAL VISION

So far we have discussed CNNs, which are a class of artificial neural 
networks, as mathematical functions mapping a range of inputs to 
specific outputs as they learn feature distributions. To some, this view 
might reduce the romantic charm of artificial neural networks in much 
the same way that learning a magician’s trick tarnishes the performance. 
This might be true if we expected artificial neural networks to resemble 
the mushy neurons in our own brains capable of complex thought and 
consciousness. To some extent, however, this disappointment is the result 
of undue expectations on our part. Luckily, unlike the magician’s trick, 
which is simply an illusion, artificial neural networks are real algorithms 
drawing from concepts across multiple disciplines spanning decades of 
research, and they work! Also, as it turns out, the more we learn about 
the mushy stuff in our noggins, the more we see that the ethereal and 
mystical process of biological vision is just a series of computational steps. 
 Now that we have a basic understanding of computer vision, it’s 
time to spend a few moments going over biological vision systems and 
seeing where art imitates reality. This is what we have all been waiting 
for, isn’t it? We want to see how well our algorithms imitate us. One of 
the most fascinating aspects of artificial neural networks like CNNs is 
when these complex systems exhibit emergent properties that resemble 
biological systems. Emergent properties are properties that arise from 
a system without being purposefully built into the system. But before 
we can dive into the emergent properties of CNNs, we need to discuss 
some of the architectural or physiological parallels between biological 
and artificial neural networks. This chapter has been all about vision, 
so we will continue to follow the vision thread as we explore parallels 
between artificial and biological systems. We have learned that artificial 
neural networks are built as stacks of layers made up of neurons, where 
connections and information flow from layer to layer. It turns out that, 
at least in principle, our vision system is quite similar.
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 Let’s start with an overview of the most important elements of 
our vision system. For the purposes of this book, we don’t necessarily 
need to understand each component of our vision system. We will 
do the best we can, however, to start with a robust description of the 
components involved; this way, we can at least start to see how vision 
involves many different processes and structures working together, 
beginning with simple concepts and building complexity. The vision 
system of mammals consists of three main components: the retina, the 
lateral geniculate nucleus (LGN), and the visual cortex in the brain. 
The visual cortex itself is divided into five areas: the primary visual 
cortex (V1) and the secondary visual cortex (V2), as well as V3, V4, 
and V5. 

Information processing for vision begins in the eye itself, at the 
retina. The retina consists of several layers of cells, beginning with 
ganglion cells and followed by bipolar and horizontal cells connected 
to a photoreceptor layer consisting of rod and cone cells. Rod cells 
are typically concentrated around the outer edge of the retina and 
are mostly responsible for night vision. Interestingly, our eyes have 
different structures for processing colors and grayscales. Rods seem to 
play almost no role in color vision, which might explain why it is very 
difficult to distinguish between different colors in dim environments. 
They also take significantly longer to adapt to light compared to the 
color-sensitive cone cells. This is why it takes a long time for our eyes 
to adjust when we move from a well-lit room into a dark room. 
 For color vision, we have three types of cone cells, each sensitive to 
a different frequency of light: red, green, and blue. You might know of 
someone who is color-blind. People who are color-blind have sustained 
damage to one or more types of cone cells. Depending on the types 
of cone cells that are damaged or not functioning, the individual will 
be unable to perceive certain color ranges. The most typical form 
of color blindness is a deficiency in perceiving color in the red and 
green frequency range. A more severe but less common form of color 
blindness is a deficiency in perceiving blue and yellow color ranges. As 
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we will see, these color pairings—red-green and blue-yellow—are also 
associated inside artificial neural networks.
  The cone and rod cells are connected to bipolar cells, which in 
turn are connected to ganglion cells. The ganglion cells are a very 
important layer of cells that connect the retina to the LGN and the 
primary visual cortex in the brain. An interesting property of the 
retina and the organization of these layers is that the ganglion and 
bipolar cells are directly in the path of the light as it travels into 
the eye toward the photoreceptors. You would think that one would 
place the photoreceptors in the outermost layer, free of interferences; 
evolution had other plans. Thankfully, the layers of cells in front of 
the photoreceptors are mostly transparent and offer little disturbance 
to the light.
 At a high level, the photoreceptor layer detects photons that 
enter the eye. The detection process generates signals between the 
photoreceptors and the ganglion cells. Here we encounter the first 
information-processing problem in our vision system. There are 
approximately 100 million photoreceptors in each eye but only about 
half a million ganglion cells. So as information proceeds from the eyes 
to the LGN and further toward the primary visual cortex, a significant 
amount of data compression takes place. That is, we start with roughly 
100 million data points in each eye and reduce that to roughly half a 
million data points by the time information leaves the eye en route to 
the brain. Does this sound familiar? Data compression is a quality of 
information processing that is not unique to biological vision systems; 
indeed, data is compressed and expanded as it travels between different 
stages in the visual system, and as we saw, the same is true with artificial 
neural networks.
 In the 1950s, Stephen Kuffler conducted a series of experiments 
on anesthetized cats that showed information processing starting even 
at the level of the ganglion cells in the retina. He and his team placed 
an anesthetized cat on a table with its head facing a screen and the eyes 
held open. They then showed an image of a black background with 
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a white spot moving against the black background. As they moved 
the white spot around the screen, they measured the output signal on 
the axons of specific ganglion cells connecting the retina to the LGN. 
They noticed that some cells were very sensitive to what they called 
“on center, off surround” areas, while other cells were sensitive to “off 
center, on surround” areas. This meant that when the spot of light was 
at the center of the cell’s receptive field, the “on center” cell fired a 
long burst of signals. As the spot moved off the receptive field, the cell 
moved from steady firing to not firing. 
 They also changed the white spot image to a white spot with a dark 
center, like a donut shape. As they moved the donut shape around the 
screen, they noticed that when the shape entered the receptive field of 
some ganglion cells, the cells fired when the dark spot was at the center 
of the receptive field. As the dark center moved off the receptive field, the 
cells stopped firing. Furthermore, for both the on-center and off-center 
cells, they tested what would happen if the center of the spot increased 
in size to encompass most of the cell’s receptive field. That is, for the 
on-center/off-surround cells, they increased the size of the bright spot, 
causing the receptive field of the cell to only see the “on” portion of the 
image as the off-surround area moved outward off the cell’s receptive 
field. In this case, the cell stopped the steady firing. When the researchers 
reduced the size of the bright spot so that the cell perceived the on-center 
and off-surround area again, the cell went back to a steady signal. They 
encountered the same results for off-center and on-surround cells. As the 
dark spot increased to lose the on-surround area, the cell stopped firing, 
and as the dark spot’s size was reduced and the on-surround area came 
back into the cell’s receptive field, the firing commenced again.
 A decade later in the 1960s, David Hubel and Torsten Wiesel 
extended these experiments to show that on-center and off-center 
information perceived by individual ganglion cells in the retina was 
combined in the LGN and V1 area of the visual cortex to construct 
bars, or edges, of on-center/off-surround and off-center/on-surround 
sensitivity. Do you realize what this means? This shows how complexity 
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builds as information moves from layer to layer from the retina to the 
brain (fig. 2.6). First, the eye perceives discrete points of white on dark 
background or dark on white background. Later, these individual data 
points get combined to build more complex information, such as edges. 
Furthermore, the Hubel and Wiesel experiments showed that special 
types of cells in the V1 area of the visual cortex called complex cells used 
the information gathered by ganglion cells at the retina to construct 
edges of different orientations. That is, some complex cells are sensitive 
to horizontal edges while other cells are sensitive to diagonal edges. We 
have already discussed the importance of edge detection in the context 
of computer vision. We now see that vision in biological systems, or at 
least in mammalian organisms, also starts with edge recognition. For 
their work on visual processing in biological visual systems, Hubel and 
Wiesel received the 1981 Nobel Prize for Physiology or Medicine.
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Figure 2.6  Hubel and Wiesel’s hierarchy model. Information flows from the retina to 
the brain’s visual cortex in a cat. It’s hard not to see a strong resemblance to artificial 
neural networks. Author’s rendering based on Hubel and Wiesel 1962. 
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 The primary visual cortex (V1) is by far the most studied region 
of the brain’s visual cortex. This area is divided into six different 
layers, 1 through 6. The estimated number of neurons in the primary 
visual cortex of an adult human is around 140 million. The primary 
visual cortex is the main receptor of information from the LGN and 
retina. It is great at pattern recognition. As information proceeds 
into the latter regions of the visual cortex (V2–V5), higher-order, 
more complex information is captured. Although these regions have 
not been studied as much and are not as well understood as the 
primary cortex, it is understood that such global concepts as faces and 
textures are recognized in these latter regions. These are called higher-
order concepts because they are more complex than pattern or edge 
recognition. After all, to recognize a whole face, we need to combine 
many more primitive concepts like edges, color, and even depth. This is 
an important discovery, so it bears repeating. There are complex cells in 
the visual cortex that are sensitive to complex structures, such as faces, 
in their receptive fields. This means that if we measure the output of 
these cells, we notice a spike in their signal when a human face crosses 
their receptive field. This is surprising because, intuitively, we would 
expect that a single neuron would be too simple a device to detect a 
complex feature like a whole face; it shows the hubris in our intuitions 
and why sometimes to make progress, we must abandon all that makes 
sense. Indirectly, we also know that complex structures like faces are 
handled by special components in the brain from studying a condition 
known as prosopagnosia. Prosopagnosia typically affects people from 
birth, and it is a condition whereby the afflicted individual is unable 
to recognize faces but has otherwise perfect vision. These studies have 
found evidence that faces are detected by very specialized cells or 
regions of the brain.
 Now that we have a basic understanding of how vision works in 
both computer and biological systems, we can spend a few minutes 
discussing some of the parallels between biological and artificial vision, 
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as well as what we have been referring to as emergent properties of 
neural networks. In figure 2.6, we saw Hubel and Wiesel’s hierarchy 
model of the visual system of a cat. Nearly all image-processing 
operations we have discussed thus far, including most artificial neural 
network architectures, involve weighted sum operations—that is, an 
operation where the values of an input signal to a neuron (such as the 
pixel values in an image) are multiplied by the weights of the neuron’s 
input connections, and the results are summed. Hubel and Wiesel 
proposed that weighted sum operations are also present in the neurons 
of the cat’s (and by extension our) visual cortex. 
 Experimental studies involving complex cells later found evidence 
that suggests that weighted sum operations do indeed happen in some 
neuron cells in the brain. As we have already seen, both biological 
and artificial neural networks are composed of layers of neurons with 
connections between the layers and information flowing from layer 
to layer. Vision in the mammalian visual system starts at the eye, with 
the first few layers of neurons, the ganglion cells, detecting simple on/
off regions. These signals are processed by the primary visual cortex to 
form edges and perform pattern recognition. 
 We saw with the CNN that a similar phenomenon arises in artificial 
neural networks. The first few layers are sensitive to edges and simple 
patterns. As we move deeper into the CNN, we find that the latter 
layers contain neurons that respond to more complex information. 
We find neurons that are responsive to whole faces, to eyes, and to 
texture information, just like we saw with biological systems! What is 
really fascinating is that CNNs were not predesigned to perform edge 
recognition in the first layers and detect higher-order information, like 
whole faces, in the latter layers. This is an emergent property of neural 
networks. In fact, we get the same distribution of information (the first 
layers responsive to edges and latter layers building complexity) for any 
neural network architecture we build, from CNNs to MLPs. So how 
is it possible for artificial systems to break down visual constructs in a 
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similar manner to biological systems without being explicitly designed 
to do so? The definitive answer to this question is not really known.
  Before we proceed, take a moment to digest what we have just 
said. It is quite possible that thus far in your life, you have never 
encountered an example of a system built by humans that performs a 
set of tasks that were not designed a priori. When I started researching 
and learning about neural networks, I found that the stuff we don’t 
know about these systems (the stuff whose presence itself is especially 
remarkable because we build these systems) is far more interesting 
than the things we do know. So let’s go back to our question: How is 
it possible that these emergent properties in artificial systems arise to 
resemble biological ones? As I said, we do not know for sure, but an 
explanation that I like is as follows: we build complex systems from 
simple rules, and as the system grows in size, the growth in complexity 
will generate behavior we could not have predicted a priori. 

Take the Game of Life as an example. The Game of Life, created 
by the British mathematician John Horton Conway in 1970, is not 
really a game where players compete to reach a certain goal; instead, it 
is a simulation of a world that is bound by only four rules. The world 
starts with a grid of cells and proceeds based on the following rules:

1. Any live cell with fewer than two live neighbors dies  
of underpopulation.

2. Any live cell with two or three live neighbors lives on  
to the next generation.

3. Any live cell with more than three live neighbors dies  
of overpopulation.

4. Any dead cell with exactly three live neighbors becomes  
a live cell.

Life begins by selecting a few cells in the grid and setting them to 
“alive” and then letting the simulation run for a number of generations 
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where those four rules are applied for each generation. Following just 
four simple rules, incredibly complex patterns are generated. The most 
common pattern is called “the glider,” which consists of a group of cells 
that move around the grid. There is a whole Wikipedia page dedicated to 
interesting Game of Life patterns that people have found. Interestingly, 
new patterns are still being found by Game of Life enthusiasts. 
 So what does the Game of Life have to do with vision? When it comes 
to computer vision and artificial neural networks, the important part is 
that the system is built from simple rules. That is, if we want to detect 
elephants in an image, we do not set out to break down concepts of what 
makes elephants unique (long trunk, big ears) and build an algorithm 
around detecting those. Instead, we do not make any assumptions as to 
how we are going to detect elephants. We start from an array of discrete 
points of light (pixels) and build an algorithm to learn to extract and 
combine the features that will determine whether there is indeed an 
elephant in the image. It might be that the best way for a system to detect 
visual information from first principles is to start by detecting edges and 
then putting those edges together to build more complex features. In 
fact, this might be an unavoidable consequence of building knowledge 
from a set of pixels (or photon detection in our eyes), considering that 
regardless of the neural network architecture we design, we still get edge 
and pattern recognition at the first layers. This makes it clear that the 
distribution of features among the layers is not dictated by the network 
architecture itself but by some fundamental truth about vision systems. 
Amazingly, our artificial neural networks learn this through their training 
process by minimizing a loss function, and biological visual systems 
converged on a similar approach through evolution. 
 Feature distribution is not the only emergent property of neural 
networks resembling biological systems. When we look at the features 
themselves, we notice other interesting similarities. We already know 
that the first layers of a neural network encode edge information. 
That is, the neurons in the first layers of the networks are sensitive to 
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edges in different orientations. Some neurons (remember: in a CNN, 
a neuron is a 3 × 3 filter) are sensitive to light-on-dark edges. Other 
neurons are sensitive to edges defined by color pairings (e.g., red on 
green and blue on yellow). What is quite interesting about these color 
pairings is that red/green and blue/yellow are closely associated in the 
mammalian visual system as well. As we previously discussed, people 
who suffer from color blindness have trouble seeing colors in the red/
green or blue/yellow range, with red/green deficiency being the most 
common form of color blindness. Yet here we have artificial neural 
networks discovering that it is important for vision systems to encode 
contrast information between red, green, yellow, and blue light as 
well. If artificial neural networks can discover vision techniques that 
resemble biological ones, what other similarities could exist between 
the two vision systems? 
 Optical illusions cause the brain to see things that are not really 
there. Could artificial neural networks also fall victim to optical 
illusions? You might be surprised to learn that the answer is yes—
and in much more bizarre ways than biological systems. Researchers 
have discovered that by understanding how neural networks are 
trained, one can generate images that can have the effect of fooling 
artificial neural networks. These are called adversarial images. We 
briefly discussed that artificial neural networks are trained by 
minimizing a loss function. That is, artificial neural networks are 
trained by modifying the internal connections so as to minimize the 
prediction errors for each iteration of training. Researchers realized 
that if the model parameters can be modified by the training process 
to minimize the prediction errors, then working with the opposite 
intention, where the model parameters are modified during training 
to increase the prediction errors, might yield interesting results. 
 For example, we could use the same principle to modify the 
input image in such a way as to maximize the error for each iteration 
of training. This can result in very interesting classification errors 
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where a neural network might predict that an image that looks like 
random noise is a cat, an elephant, or any one of the categories it is 
trained to predict (fig. 2.7). Researchers have also discovered that 
some images can fool artificial networks of different architectures 
and training. A recent research paper found that some images that 
can fool artificial neural networks can also fool humans! To be fair, 
the researchers had to place a few constraints on the system to fool 
humans. These constraints help shed more light on the differences 
between human and artificial perception. For example, to fool the 
humans in the study, the images were flashed on a screen for a very 
brief period, and the human subjects had to quickly predict the 
category of the images they were seeing. The images could only be 
shown for a very brief period, or the humans would quickly realize 
the true nature of the images. 
 You see, the human visual system is much more sophisticated 
than our current artificial neural networks. For one, there are many 
more millions of neurons in the human visual cortex, with orders of 
magnitude more connections, than in artificial neural networks. The 
neural networks responsible for vision in humans are also not simple 
feed-forward networks like the artificial networks we have discussed. 
Feed-forward neural networks have connections between layers with 
information flowing in one direction from the first layer down to the 
last, hence “feed forward.” The neural networks in our brains have 
connections that loop back between the layers and form recurrent 
loops between the layers as well. This has the effect of reenforcing 
certain features and makes our ability to perceive the world around 
us more robust. When trying to fool humans and artificial neural 
networks using the same images, the researchers minimized the effect 
of recurrent connections in our brains by letting the human subjects 
see the images for only a brief time. So what does this experiment 
teach us? What is the purpose of showing that images that can fool 
artificial neural networks can also fool humans?
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Figure 2.7  Two different kinds of artificial optical illusions created by different 
researchers that have been able to fool neural networks. Top, four examples of noisy-
looking images that caused a well-trained neural network to predict “robin,” “cheetah,” 
“armadillo,” and “lesser panda” for each sample. Bottom, an image of a panda: the trained 
neural network predicts that this is an image of a panda with 57.7 percent confidence; 
researchers then modify the image by adding a small amount of noise, resulting in 
an image that looks no different to us but causes the neural network to reclassify the 
image as a “gibbon” with 99.3 percent confidence. Image of “panda”/“gibbon” from 
Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, “Explaining and Harnessing 
Adversarial Examples” (poster presented at the Third International Conference on Learning 
Representations, San Diego, CA, 2015), https://doi.org/10.48550/arXiv.1412.6572. Image 
of noisy “robin,” “cheetah,” “armadillo,” and “lesser panda” from Anh Nguyen, Jason Yosinski, 
and Jeff Clune, “Deep Neural Networks Are Easily Fooled: High Confidence Predictions for 
Unrecognizable Images,” in 2015 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 427–36 (Washington, DC: IEEE Computer Society, 2015).  

 Images that can fool neural networks of different architectures, 
including biological ones, suggest that when it comes to understanding 
vision and emulating it in artificial systems, perhaps we are really onto 
something. If the same image can fool biological neural networks and 
artificial neural networks that look vastly different, even when the 
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artificial neural networks were trained using different loss functions, 
it might mean that the networks are all converging on a fundamental 
set of principles for interpreting the world. Sure, the rules they are 
discovering aren’t perfect—hence the incorrect predictions—but it is 
exciting to see artificial systems emulating biological ones even when 
the results are incorrect. 

In this chapter, we set out to understand neural networks in the context 
of computer vision. We used a CNN as our conduit for comparing 
artificial and biological vision. We learned how features are extracted 
from an input image through each layer of the CNN down to the 
classifier. We now understand that artificial neural networks work by 
discovering the probability distribution of the features that make up 
their training data and use the learned distributions to make predictions 
about new samples. 
 It is encouraging and very exciting to see the similarities between 
biological and computer-vision systems—especially when the 
similarities are emergent, as if we suddenly, in our half-blind stumbling 
through an uncharted cave, happened to hit on a gold vein. These 
similarities, and the results we have achieved, encourage us to continue 
in the pursuit of the perfect neural network (is there one?). Today, 
artificial neural networks have been able to outperform humans in 
many specific categories, with “specific” being an important qualifier. 
 We can train a neural network to detect melanoma on a data set 
of 30,000 images from a hospital in Toronto, and that neural network 
will outperform a human pathologist by an accuracy of at least 10 
percent against the same data set. But now grab a few samples from 
a hospital in Denmark that happens to prepare the biopsy slides 
in a slightly different manner (e.g., using different tissue-staining 
techniques), and the trained neural network that outperformed the 
human against the Toronto slides might be completely useless against 
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the Denmark samples—yet the human pathologist will be just fine. 
Examples like these show us that, although we have come a long way 
in our pursuit of artificial vision, humans still see the world differently 
from neural networks. We are definitely better at generalizing concepts. 
When we teach a child a new word or a new class of objects—say we 
teach her what a soccer ball looks like—we do not need to present her 
with 10,000 images of soccer balls. Somehow her brain is capable of 
understanding the fundamental features of a soccer ball from a single 
sample. The child will (with some additional exposure to far fewer than 
10,000 data points) be able to recognize any design, size, and color of 
soccer balls. Artificial neural networks are not there yet. It might be that 
simply modeling distributions based on a set of samples is destined to 
biases toward the training data, dooming the algorithm to excel only in 
specific settings. But research is ongoing, and if history is an indication, 
we will solve that problem too.
 We can now answer the burning question of how similar computer 
vision is to human vision and, by extension, how similar artificial neural 
networks are to biological ones. Are artificial neural networks akin to 
some poor soul forsaken to a canned existence inside the Matrix? As of 
today, neural networks exhibit many elements also found in biological 
information processing, but at their core artificial neural networks are 
modeling distributions by minimizing a loss function. Minimizing a 
single loss function might be too simple an approach if our goal is to 
mimic the human brain. We saw the downfalls of minimizing the loss; 
the opposite is also possible. We can maximize the loss and get funny, 
bizarre results from our predictions. Our brains appear more robust at 
handling and processing input data. 

In the next chapter, we dive deep into distributions and the decision-
making process of neural networks. We learn more about loss functions 
and see, step by step, how neural networks can be trained using gradient 
descent through back propagation. This is, without a doubt, one of the 
most elegant algorithms in computer science.



We are slowly uncovering the secret powers of neural networks. 
The last two chapters described neural networks as funnels of 

information where the input data is compressed into a latent vector—a 
vector representation of the input. Then, the network performs either 
classification or some type of linear regression to get our output (fig. 
3.1). In this chapter, we learn more about this last bit by discussing the 
mathematical assumptions and tools we use to classify or to analyze 
data samples to forecast some trend. 

This is the chapter where we learn what makes neural networks 
tick. Our goal is still to find out what an AI system is truly thinking. 
This is important because it is intrinsically interesting and inspiring 
that a species not far removed from apes has created something 
that can be confused with intelligence. It is also important because 
anything new can be scary, and fears of AI have been explored and, 
to some extent, fed by Hollywood for decades (with movies like the 
Terminator, the Matrix series, and, more recently, Ex Machina). But 
concerns with AI and intelligent robots are not new and did not 
start in the latter part of the twentieth century; already in the 1940s, 
the science fiction author Isaac Asimov warned about the possibility 
of a machine takeover. As prophylaxis against such a scenario, he 
introduced the Three Laws of Robotics: 

3

ANSWERING AN  
AGE-OLD QUESTION
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1. A robot may not injure a human being or, through  
inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human beings  
except where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such 
protection does not conflict with the First or Second Law.

More recently, AI entrepreneurs like Elon Musk have voiced similar 
fears of a Terminator-like machine rebellion if we don’t constrain our 
current accelerated pace of AI research and adoption. AI researchers, 
on the other hand, seem less worried about machines deliberately 
deciding to take over the world and more concerned with the misuse of 
AI by humans, as discussed in Scientific American’s “What an Artificial 
Intelligence Researcher Fears about AI.” 

To really understand what is scary about AI and how we avoid 
dangerous consequences, we should first attempt to understand AI. In 
this chapter, we explain AI algorithms as probability estimators.12 To 
do that, we learn about probability distributions and about linear and 
logistic regression algorithms. We also look more deeply at how neural 
networks are trained and how the model parameters are adjusted 
using calculus. You will not need to understand the math to get the 
message of this chapter, but it can be quite beneficial to at least try 
to understand the math. In the next chapter, we address the concerns 
around misuse of AI. Here, we discuss the fundamentals of how neural 
networks operate. After reading this chapter, you will have the tools 
to develop an informed opinion for the flavor of concern that makes 
sense to you.

12. For simplicity, I am using the terms probability and likelihood interchangeably, though 
there are technical differences between them. 
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Figure 3.1  A neural network as a funnel of information. Information is input at the 
top and compressed through the network down to a latent vector representation. The 
output of the network is then typically calculated by performing linear regression (if 
predicting a continuous value) or logistic regression (if performing some classification). 

Now that we have built a functional understanding of two of the 
most common classes of neural networks—the MLP (fully connected 
neural network) and the CNN (convolutional neural network)—we are 
going to dig a little deeper and peek into the soul of these algorithms. 
We have seen how a neural network consists of an arrangement of 
neurons with connections that are assigned special values, or weights. 
We understand that these weights are adjusted during the training phase 
of a neural network, and we know that these adjustments are where 
the magic happens. As we adjust the weights of the neural network, its 
predictions begin to get more and more accurate. And although we have 
skirted around the training process and briefly discussed a loss function 
as a measure of success, our discussion has been very superficial. Why is 
it that minimizing a loss function should cause a complex mathematical 
function (as discussed, we can consider a neural network a mathematical 
function) to map a set of input features to a class of desired outputs, 
especially for data samples it has never seen before? We have thrown 
around the term probability distribution and explained that neural 
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networks are in fact learning the parameters of a probability distribution 
from the data samples in a training data set. We have said, or at least 
implied, that once the distribution is understood, generating an output is 
simply the process of sampling from the learned distribution. But do we 
really understand what this means? Do we understand what probability 
distributions are and why they are helpful? 

Probability distributions are so crucial that the process of creating 
a loss function for training a neural network is the most important 
aspect in the design phase of a neural network. By now, researchers 
have identified loss functions that work for many of the use cases where 
we want to employ our neural networks, and most software engineers, 
when creating a neural network to solve a specific problem, just choose 
a loss function that has been proven to work for that class of problems. 
But identifying a new loss function or improving an existing one 
involves defining the problem we want the neural network to solve, in 
terms of probabilities. That is, we want the neural network to calculate 
the probability that a set of features for a given sample belong in each 
one of the categories defined by the network’s outputs. This is the bit 
of magic that allows the neural network to work beyond the training 
data set. If we were to embark on defining a new loss function without 
considering how it could maximize the probability that the input 
features belong in the desired output category, we might find that 
our loss function produces weight values that lead nowhere or ones 
that only work for the training data set but do not generalize to real-
world data. So, to better understand these important facets of artificial 
intelligence and its continuing development, let’s dive into probability 
and its loyal companion, statistics. 

At the heart of any algorithm that aims to predict an outcome 
for a data sample—for example, predicting the price of a house given 
some information about that house or predicting the species of a 
certain bird given the length of its beak—is probability and statistics. 
All the artificial intelligence algorithms we use today, including 
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neural networks, use concepts from probability and statistics to 
make predictions on data. Why use statistics? Statistics is the best 
tool we have for making sense out of data. Everything we do in our 
lives generates data: withdrawing money from our bank, buying 
food from the grocery store, the type of food we buy, the amount of 
money we spend every month, and the movies we watch on streaming 
platforms. When information like this is kept together in a database 
and attached to an individual, it provides an excellent description of 
what that individual is like and their day-to-day habits. Today, data is 
one of the most highly valued commodities; companies like Facebook 
and Google earn billions of dollars off the information they maintain 
about you. And it is all thanks to probability and statistics. Statistics 
provides a toolbox for manipulating and extracting information from 
data. Based on information about events in the past, statistics helps 
build a timeline or relationship between those events. When we 
combine data with concepts from probability theory, we are able to 
predict future outcomes based on past events. 

For example, most online retailers or even streaming platforms 
are well known to employ automated recommender systems aimed 
at suggesting new products you should buy or new movies or TV 
series you should watch. And you have probably noticed that, for 
the most part, they tend to be disturbingly good at suggesting items 
you would like. They can do this by building a model of you. By 
keeping a collection of data points over time—which items you buy, 
which movies you watch—they can predict what items you might be 
interested in. As we will see, designing a system to predict which shoe 
brand I am most likely to buy is not much different from designing a 
system to predict house prices or classify images of cats. 

All artificial intelligence problems start with a data sample and a 
question about the sample. A data sample might be a single house in 
a data set of different real-estate listings. Let’s say the house has four 
bedrooms. The question might be: “How much is the house worth, 
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given the number of bedrooms?” If we have a database somewhere 
relating the number of bedrooms per house to property value, we 
could build an algorithm that is able to analyze the data in the 
database and extract the information we want to learn. What type 
of information might this be? Well, we would want our algorithm to 
learn a relationship between the number of bedrooms and property 
value. By learning this relationship, the algorithm could then apply 
this information to a brand-new house it has never seen and guess 
the price of the house based on the number of bedrooms of that 
new property. But we are getting slightly ahead of ourselves. To 
understand how artificial intelligence systems work, we need to 
understand probability distributions. 

In this chapter, we focus on three well-known probability 
distributions: the binomial distribution, the normal or Gaussian 
distribution, and the Bernoulli distribution. If you haven’t heard these 
terms before, don’t worry; we cover them below. We do not get too 
deep into the mathematics, but it is important to understand a few 
basic concepts to make progress. We only go as deep as necessary 
to conceptually understand how we can make predictions about the 
future, based on information from the past. Here we go.

PROBABILITY DISTRIBUTIONS AND COIN TOSSES

What is a statistical model? A statistical model is a set of assumptions 
we make based on our current data, to help us make predictions about 
future data. The purpose of AI is to learn a set of good assumptions 
about existing data so that we can make predictions about future 
data. If this sounds like the definition of a statistical model, it is not 
a coincidence. So how do we make those assumptions? The answer 
involves probability distributions. Before we go any further, let’s 
examine what we mean by probability distribution.
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 Suppose we conduct an imaginary survey to find out the average 
height of fifteen-year-old boys. Let’s say that we go out and survey 
one thousand boys, and we find the distribution of boys per height as 
represented in table 3.1.

Table 3.1  Distribution of Boys according to Height in a survey

Height (m) Number of boys

1.64 30

1.66 80

1.68 200

1.7 400

1.72 220

1.74 50

1.76 20

  Our distribution suggests that most of the boys in our survey 
are around 1.7 meters tall. If we build a histogram to visualize our 
data (fig. 3.2), we notice that the histogram resembles a rough bell 
shape, and it shows that most of the information is stored around 
the 1.7-meter mark, which happens to be the average, or mean, of 
our data. Our histogram shows sharp jumps between the different 
measurements in our survey. The sharp jumps are due to our survey 
being small (and imaginary!) so that although we can conceive that 
some boys might measure anywhere between 1.64 and 1.66 meters, 
we didn’t find any in our survey. Using this information, we can also 
create a probability distribution graph that shows the probability that 
a fifteen-year-old boy measures any of the possible heights in our 
distribution (fig. 3.3).
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Figure 3.2  Histogram of one thousand participants in a survey, arranged according 
to height.
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Figure 3.3  Probability distribution for each possible measurement (orange bars). The 
blue line shows the continuous probability for the height of the surveyed participants 
in the 1.64–1.76 m range.

 To better represent the gaps in information that our survey might be 
suffering from, we could draw a continuous line that connects the edges 
of our histogram bins. When we do this, we can see a graph that tells us 
that most fifteen-year-old boys are on average 1.7 meters tall, and that 
lets us predict the probability of a fifteen-year-old boy being anywhere 
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in the 1.64-meter to 1.76-meter range. A formal way of describing 
the information we have just seen is to say that figure 3.3 represents a 
probability distribution for a population of fifteen-year-old boys based 
on their height. In our case, the size of our population is one thousand 
boys. And the mean height of that distribution is around 1.7 meters. 
Why is it called a probability distribution? Because the graph shows 
the continuous probability that a boy is any height in the range of 1.64 
to 1.76 meters. Another way to state this is that the graph shows how 
the probabilities of all possible height measurements for the surveyed 
participants are distributed in the range of 1.64 to 1.76 meters.

Why is this information important? Suppose I tell you that there 
is a boy who was not among the one thousand boys surveyed. All we 
know is that he is fifteen years old. If I ask you to guess his height based 
on his age, what would you guess? Given that you have seen our survey 
and data set, you would probably guess that he is 1.7 meters tall. If 
you did, then fantastic! You have just designed your first AI system. 
Figure 3.3 tells us that there are other possibilities for his height; 1.65 
meters and 1.73 meters are both possibilities within our distribution. 
But given that we don’t have any more information than his age, and 
we must pick a single value, picking the average is our best option, 
and it’s a pretty good option. We might be off in a few cases, but if we 
have to predict the height of a group of boys, we can expect that by 
picking 1.7 meters we will be right more often than if we just randomly 
guess a height. Intuitively this feels right. It feels right because we are 
used to thinking in terms of average. It is natural for humans to make 
decisions based on averages of experiences. It even makes sense from an 
evolutionary point of view. 

Imagine that we are back on the African savanna two million years 
ago. We have left the comfort and safety of the trees and descended its 
branches for the last time. Before us stand the open grasslands, full of 
new opportunities and new dangers. To succeed, it will help us to learn 
from the average of our collective experiences. If one of our friends runs 
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down the field and gets eaten by a lion, and we immediately change 
our course of action based on this single case, our progress is going to 
be limited. To leave the trees behind, we must be able to accept new 
dangers, and we can’t give up on a reward—crossing an important river 
or chasing a young antelope—simply because a single negative event 
has occurred. Similarly, if every one of our friends who tries to cross 
the river dies, and we don’t adjust our behavior, we are not going to 
get very far. It is evident that there is a heavy cost to living on the 
edge of our distribution. One extreme is that we immediately change 
strategies as soon as we encounter a bad outcome (our friend is eaten by 
a lion). This is costly because, on the African savanna, bad experiences 
are going to happen often enough that if we change course every time, 
we are not going to make much progress. The other extreme is that if 
we keep encountering bad outcomes (our friends drowning crossing 
a river) and we do not recognize that we must change strategies, the 
cost is that we are all probably going to die, and we won’t learn much 
in the process. A better approach would be to stay in the middle of 
the two extremes and adjust strategies only after a number of negative 
outcomes. Another way to say this is that a good strategy would be to 
continue doing the things that work most of the time.
 What our ancestors were doing on the African savanna was 
building a statistical model using a learned probability distribution, 
just like we did to predict the boys’ height using the information from 
our survey. We are going to come back to these concepts many times 
throughout the book because this is the essence of what every artificial 
intelligence algorithm does. Every artificial intelligence algorithm 
is trying to build a statistical model by learning the parameters of a 
probability distribution function. Different AI algorithms use different 
techniques to learn those parameters, and some are more successful 
than others, but they are all trying to build a statistical model. Let’s 
look at another example of probability distributions, using a set of 
coin-flipping experiments. Once we understand probabilities, we will 
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see how the last layer of a neural network leverages a loss function to 
learn the probability distribution for the data in a training data set.

For this experiment, we assume that we have a fair coin, where the 
probability of getting tails is 50 percent each time we flip the coin. We 
are going to define our experiment as consisting of ten flips. That is, a 
single experiment involves flipping a coin ten times. Next, we define 
a variable x as the number of tails we can get in each experiment; in 
other words, x refers to the number of tails we can get in ten trials 
for each experiment. Then, we are going to construct the probability 
distribution for each possible outcome of x. 

We can ask what the probability is that we get zero tails in an 
experiment of ten trials (our ten flips). The probability that we get 
zero tails, which we can formally define as P(x = 0), is the probability 
that every single flip in the ten trials lands heads. Out of all possible 
combinations of heads/tails in ten coin tosses, there is only one 
arrangement that produces zero tails. That is the case where all ten 
tosses land heads. The probability of this outcome is  . Remember 
that each trial only has two possibilities—heads or tails—and we are 
conducting ten trials in our experiment. This means that there are 2 × 2 
× 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 1,024 possible ways to combine heads 
and tails in an experiment of ten coin tosses.

Let’s illustrate what we mean with the following description of 
possible outcomes in ten coin tosses:

Possible outcome 1: HHHHHHHHHH → 0 tails in this 
experiment, all heads.

Possible outcome 2: THHHHHHHHH → 1 tail in this experiment 
on the first trial.

Possible outcome 3: HTHHHHHHHH → 1 tail in this experiment 
on the second trial.
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Possible outcome 4: HHTHHHHHHH → 1 tail in this experiment 
on the third trial.

Possible outcomes 5–1,023: …

Possible outcome 1,024: TTTTTTTTTT → 10 tails in this 
experiment, no heads.

 The above list of possible outcomes shows that—accounting 
for the fact that each trial can be a heads or a tails and knowing that 
our experiment consists of ten trials—we have 1,024 possible ways 
to mix heads and tails. Going back to our variable x, we can list the 
probabilities for each number of tails (our desired outcome) in a given 
experiment.

P(x = 0) =  → Probability that we get 0 tails. There is only 1 outcome 
that can achieve this: HHHHHHHHHH.

P(x = 1) = → Probability that we get 1 tails. There are 10 outcomes 
that can achieve this (shift T to fill each position once).

P(x = 2) =  → Probability that we get 2 tails.

P(x = 3) =  

P(x = 4) = 

P(x = 5) = 

P(x = 6) = 

P(x = 7) = 

P(x = 8) = 

P(x = 9) = 

P(x = 10) = 
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 If you don’t quite understand how we can calculate the probabilities 
for each outcome in our experiments, don’t worry; you just need to 
know that it is possible to calculate the probability for each outcome. 
And from those probabilities, we can build a probability distribution 
(as we will see next). If you are curious, however, as to how you can 
easily calculate those values without having to list all 1,024 possibilities 
and then counting each desired outcome by hand, the way to do it is to 
use combinatorics. Most calculators have a function that looks like nCr. 
To calculate the probability of getting six tails in ten trials, P(x = 6), we 
input 10C6, which equals 210. Then, we divide by the total number of 
possible outcomes (1,024). All right, now we can move on to building 
our probability distribution.

If we look at the orange bars of figure 3.4, we can see the discrete 
probability distribution for each outcome of x. It is called a discrete 
distribution because for each specific outcome, there is a single 
probability that describes the likelihood of that outcome. In statistics, 
the probability of different kinds of events occurring can usually be 
described by one of several well-known probability distribution 
functions. An experiment that consists of many trials and only has two 
possible outcomes per trial—success or failure (i.e., heads or tails)—
can be described using the binomial distribution. 
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Figure 3.4  The probability distribution function for the coin-flipping experiment. 
The x-axis shows the number of tails we can get in an experiment comprising ten coin 
flips. The y-axis shows the probability of flipping any number of tails in ten trials.
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THREE DISTRIBUTION TYPES

Here is why we have worked so hard to get to this point. It turns out 
that binomial distributions are very important in statistics because 
they are found to describe many processes in nature, so understanding 
binomial distributions can be a powerful tool in helping us understand 
nature. Remember, the purpose of artificial intelligence is to use the 
power of computer systems to extract information from data, to make 
predictions about future data. Probability distributions help us visualize 
the likelihood of each possible outcome in our experiments so that we 
do not have to conduct every experiment. To use our coin-flipping 
example: by knowing the probability distribution of possible outcomes 
for ten flips, we do not have to perform hundreds of experiments 
where we flip a coin ten times to empirically discover all the possible 
combinations of heads and tails. If we are asked to calculate the 
likelihood of observing six tails in an experiment of ten coin flips, we 
can just consult our probability distribution function. In general, if 
we know the likelihood of each possible outcome, then we understand 
our data enough to make predictions about future samples. This is the 
strength of probability distributions. 
 Why is this important in AI? Artificial intelligence algorithms 
are essentially making informed guesses about new data samples. Let’s 
take forecasting algorithms for securities trading as an example. These 
algorithms are tasked with predicting the future price of a stock, but 
how can they do that? There is no magic ball that can tell us what the 
future looks like. So how could these algorithms make any predictions 
about events that have not yet occurred? What these algorithms have 
is data. They are trained on stock market data using past transactions 
and stock prices, and if the data is good and extensive, they can use 
this data to learn to recognize trends that can help to predict future 
market fluctuations and stock values. Imagine we know the probability 
distribution of possible prices for a given stock for any day of the year. 
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To predict the price of the stock for next Tuesday, all we have to do is 
sample from the distribution—that is, pick a price for the stock that, 
according to our probability distribution, is highly likely to be the stock 
price next Tuesday. To be clear: this is still a guess, but it’s an informed 
guess. Artificial intelligence algorithms are constantly making guesses. 
When the algorithms are well trained, these are guesses based on highly 
probable outcomes.
 In the medical field, artificial intelligence algorithms are used to 
analyze patient information to predict the likelihood that a patient 
is suffering from a given disease or will develop the disease at some 
point in the future. For instance, researchers are investigating the use 
of AI algorithms in the medical domain to predict the likelihood of a 
patient developing heart disease based on historical data. To do this, 
the hospital maintains data sets containing such patient information 
as age, gender, profession, height, smoking habits, history of heart 
disease in the family, and other information, along with an indicator of 
whether the patient suffers from heart disease. Similar to how we used 
the data from our survey to predict the height of fifteen-year-old boys, 
by analyzing the data from existing patients, the algorithm can learn 
relationships between each piece of information describing the patient 
and whether the patient has heart disease. Later, when a new patient 
walks in, a physician can ask the algorithm to predict how likely the 
patient is to suffer from heart disease given their age, gender, smoking 
habits, and other history. And it is all based on the algorithm’s ability 
to learn the probability distribution for the likelihood of a patient 
developing heart disease for each possible combination of features for 
that patient (age, gender, smoking habits, etc.). 
 Whether we are trying to predict a person’s height or determine 
the trajectory of a hurricane or classify images of birds into different 
species, there is a probability distribution that describes the underlaying 
data, which we can use to build a model. The binomial distribution 
is a discrete distribution because for each possible outcome there is 
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a specific probability of that outcome occurring. The probability 
of getting only one tails in ten trials is a specific value. But not all 
distributions are discrete; some are continuous. In fact, we have already 
seen an example of a continuous distribution. In our example of 
predicting the heights of teenagers, we saw a continuous distribution. 
It is continuous because, although the mean of the distribution is 1.7 
meters, no two boys from our survey are likely to have measured the 
exact same height. Consider that measuring someone’s height is at best 
a good approximation. We have to account for the volume of hair on 
their head and how that might affect our measurement, the fact that 
not everyone stands perfectly straight, and so on. So a measurement of 
1.7 meters is at best an approximation, with some boys being 1.7005 
meters and others being 1.6999 meters. When the range of possible 
outcomes comprises continuous values, the distribution is a continuous 
distribution. The probability distribution from our heights example is 
called a Gaussian, or normal, distribution. The binomial distribution is 
the discrete version of a normal distribution. As we increase the number 
of trials in our experiment (if instead of ten coin flips, we perform one 
million coin flips), the binomial distribution will eventually approach 
the normal distribution (see the blue line in fig. 3.4).
 The normal distribution is defined by two parameters, the mean 
(which we have already seen) and the variance. The variance is a measure 
of how much the data varies from the mean. A normal distribution 
with low variance means that the data is closely aligned to the mean; 
in other words, most samples in the data are close to the mean. On the 
other hand, a distribution with high variance means that the data is 
spread out away from the mean.
 Knowing the parameters of a probability distribution is very 
powerful because it means that we can sample from the distribution. 
If we know the parameters of our distribution, we can pick values that 
conform to that distribution to generate new data. It also means that 
we can evaluate new data by seeing where it falls in our distribution. 
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Imagine we are taking part in a trivia night, and we are asked the 
following question: “John M., born on May 2, 1976, won MVP in 
which major league sport?” One of our friends at the table thinks he 
knows the answers. “It must be hockey!” he says. But before you let 
him answer, someone else at the table happens to be a statistician who 
did a study on NHL players, and she remembers two key pieces of 
information: the mean and variance for the probability that NHL 
players are born on a given day of the year. And she knows that the 
mean of that distribution is centered on March 3 with a variance of 
twenty days.13 With this information she can tell that most NHL 
players are born between December 14 and March 23. She still can’t 
answer the trivia question, but she knows the major league sport in 
question is likely not hockey. 
 This is precisely what artificial intelligence systems do all the 
time. They make educated guesses about the probability distribution 
behind a given process and then proceed to discover the parameters 
of that distribution by analyzing existing data. Once the parameters 
of the distribution are discovered, new data can be evaluated against 
the known distribution. In statistics, we have many probability 
distribution functions that can be used to describe different processes. 
We have the binomial distribution, the Poisson distribution, the normal 
distribution, the Bernoulli distribution, and so on. Each distribution 
has a different set of parameters that describes that distribution. And 
different problem types are better suited to different distributions. 
The Poisson distribution is good for describing counts or incidents in 
a defined period. For example, if we want to predict the number of 
visitors to our website over the next month considering the number of 
visitors we received each of the previous twelve months, we can assume 
the number of visitors each month is distributed according to the 

13. This is a fictional example to illustrate how understanding the probability distribution 
of some process can help us make predictions. We don’t know if the process describing 
birthdays of hockey players is Gaussian, and we certainly don’t know the mean and 
variance of that distribution. 
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Poisson distribution. We can find the parameters of the distribution by 
analyzing how many visitors came to our website each day of the past 
year, and we can sample from that distribution to make predictions 
about how many visitors we will get over the next month. 
 We revisit the Bernoulli distribution later when we discuss 
classification algorithms. It is used to describe the probability distri-
bution of data samples falling into one of two categories: dog vs. cat, 
orange vs. apple, heart disease vs. healthy. The normal distribution, 
which we have seen, is one of the most assumed distributions in 
artificial intelligence. Many processes—like population height, 
customer satisfaction, and birth weight—can be modeled using the 
normal distribution. The exact reason why this is the case is beyond 
the scope of this book but is explained by a mathematical theorem 
called the central limit theorem. This theorem states that whenever a 
population sample is large enough (a population sample is a subset of 
the population that we use in our experiments; e.g., the one thousand 
boys we surveyed are a sample of the overall population of fifteen-
year-old boys in the world), the means of different population samples 
follow a normal distribution. This is powerful because it implies that 
whenever we have a process that depends on the aggregate of many 
subprocesses, the aggregate process can be modeled using the normal 
distribution. And many things in nature are the result of the sum of 
many other processes; for example, the birth weights of newborn babies 
are the result of many subprocesses (the size of the parents, different 
health markers from the mother, which is itself affected by different 
pressures for the society in which the mother lives, etc.).
 At this point, we should understand distributions and the power of 
using probability distributions to make predictions. We have developed 
an understanding of how we can use statistics and probability to create 
a simple model from existing data. But what if our data sets are slightly 
more complicated? What if, instead of surveying only fifteen-year-
old boys, we surveyed teenage boys between the ages of thirteen and 
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nineteen and wanted to build a model that could predict their height 
in that age range? We could still assume a normal distribution and find 
the mean height of boys in the thirteen-to-nineteen age range, but you 
can intuit that the mean for that distribution will not be very useful to 
predict the height of a seventeen-year-old boy or a fourteen-year-old 
boy because the mean would be spread out over the entire thirteen-
to-nineteen age range. What we need in this case is a method that can 
find the probability distribution of height for each age group in the 
thirteen-to-nineteen age range.

LINEAR REGRESSION: THE CONCEPT

Calculating the mean height of the sample population of fifteen-year-
old boys was a good step for predicting the height of fifteen-year-old 
boys outside of our survey data set because the mean is one of the 
parameters of the normal distribution, and we can use it to measure 
where those boys fit in that distribution. But what if our data set 
consists of a range of ages, as we postulated above? In this example, we 
might still be able to calculate the mean height for each age group in 
the sample population and store those values to make predictions in 
the future, but that would only work if our data set comprises many 
samples for each age group from thirteen to nineteen. If our data set 
does not have samples for ages fourteen and fifteen, how could we 
calculate the mean height for these groups? In this case, our simplistic 
model would fail. When we apply artificial intelligence to solve 
problems in the real world, our data sets are far from perfect, and there 
are population groups for which we have no information or very little 
information. To solve this problem and approximate an answer for data 
that might be sparsely populated, we can use linear regression.
 Linear regression is a widely used algorithm for predicting market 
valuations in financial institutions. It can be used for modeling 
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customer satisfaction in the hospitality industry or predicting the rate 
of infection for a contagious disease over a population. In general, it is 
a method used for finding a relationship between a dependent and an 
independent variable. As we will see, linear regression is an algorithm 
in its own right, and it can be used without a neural network; however, 
as we saw in chapter 2, what many neural networks do to forecast 
information in their last layer is a form of linear regression. Using 
our house prices example, the independent variable is the number of 
bedrooms of the house, and the dependent variable is the house price. 
The price of the house is a dependent variable because our assumption 
is that the price of the house depends on the number of bedrooms of a 
house. Linear regression is performed by finding the line that best fits 
the data in our data sets. The best-fit line is the line that minimizes the 
distance between the points on either side of the line and the line itself 
(fig. 3.5). It is a powerful device for finding relationships and making 
predictions about data points where there is missing information, or 
gaps in our data set. Let’s take a look at a few illustrations of scatter 
plots and best-fit lines.
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Figure 3.5  Three scatter plots with best-fit lines (black lines) running through 
the data points (blue dots). Subplot (a) shows a positive linear relationship 
between the dependent and independent variable. Subplot (b) shows a negative 
linear relationship between the dependent and independent variable. Subplot (c) 
shows data that does not exhibit a linear relationship between dependent and 
independent variables.
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 If we look at figure 3.5, we see three different examples of scatter 
plots with a best-fit line running through the data points. Scatter 
plots are used to visualize the relationship between samples in a data 
set. If we have a data set consisting of many samples, we can plot 
the samples on a graph where the x-axis represents the independent 
variables (in our house example, these would be the number of rooms 
in the house), and the y-axis represents the dependent variable. Figure 
3.5(a) shows a positive relationship between the independent and the 
dependent variable. As the independent variable grows—that is, as 
the values increase in the x direction—the values also increase in 
the y direction. Subplot (b) shows a negative relationship between 
the independent and dependent variables. As values increase in the 
x direction, the values in the y direction decrease. From subplots (a) 
and (b), we can see that the relationship between the independent 
and dependent variable is approximately linear. As the values increase 
or decrease in the x direction, the values in the y direction increase or 
decrease by the same factor. Understanding the relationship between 
the independent and dependent variables in our data set is crucial to 
understanding whether we can hope to build a model to interpret 
our data.
 Suppose we have three separate data sets that produce scatter 
plots (a), (b), and (c). In subplots (a) and (b), we can see that the 
independent and dependent variables have a linear relationship. 
Remember that the dependent variable is the value we want to learn 
how to model (i.e., how to predict) given the independent variable. 
In these cases, we might consider using a linear regression algorithm 
to find the line that best fits the data. Once we find the best-fit line, 
that line becomes our model. Using this line, we can analyze data 
points outside of our data set and “predict” the value on the y-axis 
(i.e., the price of the house) (fig. 3.6). 
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Figure 3.6  How a linear regression model (i.e., a best-fit line) can predict 
information for missing data in the data set. The segmented line indicates a value for 
the independent variable that does not correspond to any known value in our data 
set (visualized as a gap in the blue dots). The best-fit line can be used to approximate 
the missing information.

 In figure 3.6, we see an example of a gap in the “knowledge” of 
our data set. If we are asked to predict the value of a dependent variable 
(maybe the price of a house or a person’s height) given the value of 
the independent variable (the x value), we can’t use the first approach 
we explored where we calculated the mean of the values in the data 
set and used the mean as our prediction. As we can see, we don’t have 
any samples in our data set (blue dots) where there is a y value for the 
x value we are asked to predict, so we can’t calculate the average of y 
values given our x value. By using linear regression to find the best-fit 
line, we can use the equation of that line to find the y value for our 
best-fit line at point x, and this can become our predicted value.
 Now consider subplot (c) of figure 3.5. The scatter plot in (c) 
does not show an obvious relationship between the dependent and 
independent variables. If there is a relationship, it is definitely not linear. 
We can still use linear regression to find a best-fit line that runs through 
the data. The problem is that, since there is no linear relationship in 
the data to begin with, we would find the best-fit line to be a very 
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poor model for making predictions about our data. Remember that the 
purpose of AI algorithms is to build a model from existing data to make 
predictions about data outside of our data set. If a new house comes 
on the market, we want to be able to predict the price of the house 
based on the number of bedrooms even though we have never seen this 
house. But if the data set we used to build our model looks like subplot 
(c), the predictions we would make using that model would not be 
accurate enough to be useful. Even a cursory look at figure 3.6 shows 
that the predicted y value from the selected x value (the purple line’s 
x-intercept) would not be a good prediction. We can see that the line 
does not accurately predict the existing data points in the scatter plot.
 This is why good data scientists spend a lot of time understanding 
the data they are working with before running the data through a 
particular algorithm to create a model. Creating a model is easy. The 
trouble is in understanding whether the model we are creating is a good 
model to interpret our data set. In the subplot (c) example, a linear 
regression model would not be a good model to interpret that data. The 
term artificial intelligence can be misleading because it suggests there is 
some secret intelligence sauce inside a computer, and if we just shovel 
enough data into a computer and click the Artificial Intelligence button, 
the computer will sort it all out and give us the right answer. Hopefully, 
we are beginning to see that, instead of hands-off intelligence, AI is a 
collection of tools based on statistical assumptions and probabilities; to 
ensure that our projections work and are accurate, we must understand 
the data we are working with. Only then will we know whether the 
assumptions we are making make sense. Throughout the rest of the 
book, we will continue to see the pitfalls of failing to understand the data 
before selecting our algorithms or, worse, before deploying our models.

LINEAR REGRESSION: THE ALGORITHM
At this point, we should have a good intuition for what a linear regression 
algorithm does and how powerful it can be. We are now going to look 
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at how linear regression can find the best-fit line given a data set and 
how probability distributions are related to linear regression. 

First, recall that the linear regression model is a best-fit line running 
through the data in our data set. How can we create an algorithm, or a 
systematic set of steps, that results in a best-fit line? The first step is to 
choose a random line through our data set and then progressively adjust 
it. You are probably thinking, “A random line, really? How do we even 
choose a random line?” We can see from figure 3.7 that there are many 
possible ways to draw a line. In fact, there are an infinite number of 
possibilities for where we can draw a line in that graph. The answer is 
that we just pick one. We randomly select any line as our initial model.
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Figure 3.7  The two black lines are simply two possibilities among infinite ways to 
randomly place a line over a data set.

 So how do we go from a random line to a best-fit line? It starts 
with the equation of the line. This is where all the work we have done 
so far starts paying off. In high school, we learned that the equation 
of a line is y = mx + b. In that equation, m is the slope of the line, 
and b is the y-intercept. Using those two parameters (m and b), we 
can generate any line we want, in the exact orientation we want it. 
By adjusting the m parameter, we can rotate the line in any direction, 
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and by adjusting the b parameter, we can move the line up and down 
our coordinate system.
 To create a linear regression model, we simply need to create an 
algorithm that can learn the m and b parameters of the line that best fits 
the data in our data set; and to learn those parameters, we use our training 
data. Before proceeding any further, there is a slight terminology tweak 
that we must make. In AI literature, the parameters of a model are called 
weights and biases and are typically denoted using θ. The input samples 
are denoted by x, and the labels are denoted by y. So, to put it in proper 
AI terminology, the equation of our line becomes  = θ1x + θ0, where  
is the predicted label, as in the label that our new model has predicted 
for the input sample with features x. Note that  is different from y, the 
actual label (the “ground truth” mentioned in the last chapter).
 We begin training our algorithm by choosing random values for 
θ1 and θ0. This gives us our initial random line. This line will not be 
very useful, but that’s OK because we have to start somewhere. Next, 
we choose a sample from our training data set, replace x in the equation 
with that sample’s feature value, and calculate a value for . The value 
for  we have just calculated is our predicted value for this sample. 
So, continuing with our house price data set, if the house in our 
data set has three bedrooms, then x = 3. θ1 and θ0 are initialized to 
random values, so let’s assume θ1 = 10 and θ0 = 5; then  = 10(3) + 
5 = 35 (for simplicity let’s assume that these are in $1,000 units, so 
35 really means $35,000). Our linear model has predicted that our 
three-bedroom house is worth $35,000. I don’t know where in the 
world you live, but I live in Toronto, and $35,000 for a three-bedroom 
house in Toronto is laughably inaccurate, which makes sense because 
we chose random parameters for our line. Now comes the fun part. 
Because we are training our model, and because we have a training 
data set, we have a label y for this sample that serves as our ground 
truth for the sample. So let’s assume this house is valued at $1,000,000; 
then y = $1,000,000. The job of our training algorithm is to compare 
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our predicted value of $35,000 with the ground truth of $1,000,000, 
calculate how far our prediction was from the ground truth, and, based 
on this calculation, adjust the θ1 and θ0 parameters so that next time 
through our data set, the prediction will be closer to the ground truth. 
This is the essence of how all AI algorithms, including neural networks, 
are trained. We have already seen this in the previous chapters. We start 
with random parameters for our model. We generate predictions. We 
compare how far our predictions are from the ground truth, and we 
adjust our parameters so that next time through the training process, 
the predictions are closer to the ground truth.
 When we are training an AI algorithm to build a model, the training 
process goes through the entire data set several times. Recall that in AI 
literature, when the training process goes through the entire data set 
once, this is called an epoch. Training AI algorithms to achieve robust 
results may take hundreds of epochs. This means that the training process 
presents each sample in the training data set to the model hundreds of 
times before the model is fully trained. Each time a sample is presented 
to the model, a prediction is made, and after comparing against the 
ground truth, the loss for the sample is calculated. In previous chapters, 
we saw that the loss is the difference between what the actual value is 
(the ground truth, or sample label) and the predicted value. The goal 
is to reach the point where the model’s predictions closely match the 
ground truth. How do we know how many epochs it will take to train 
our model? We will get to that soon; for now, our focus is understanding 
how the model’s parameters are adjusted through training.
 Let’s assume that our data set consists of one thousand samples 
(which is a very small data set to train a model, but we need to keep 
it simple while we are still learning). A single training epoch involves 
presenting each sample to the model one at a time. In a data set of 
one thousand samples, a single training epoch consists of analyzing 
one thousand samples, comparing predictions to ground truths, and 
calculating the loss for each sample. We then want to use this loss as a 
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guide for how to adjust the model parameters to minimize this loss in 
the next epoch.14 
 To calculate the loss, we use what is called a loss function (as 
mentioned in chapter 2). The loss function is simply an equation that 
can help us calculate the difference between the predicted value and the 
ground truth in a way that can point us in the direction to adjust the 
model parameters. The loss function we select depends on the problem 
we are trying to solve and the model we are trying to train. Finding good 
loss functions for any given type of problem is an active area of research, 
and far beyond the scope of this book. For our purposes, all we need to 
know is that once an AI engineer has defined the problem and chosen a 
model to train (e.g., a linear regression model), there are well-known loss 
functions for different classes of problems that can be used to train the 
model. For linear regression algorithms, a common loss function looks 
like this: . It looks complicated, but it really isn’t. We 
know that y is the sample label, and x refers to the sample features. We 
also know that θ refers to the model weights. The only term that we have 
not seen is , and it refers to the model itself. Remember that AI 
models are considered mathematical functions. The term  describes 
a function that processes x features, and it is parameterized by weights θ. 
We use  as the name of the function instead of the traditional f because 
we call our model a hypothesis. This equation is simply saying: Calculate 
the difference between the predicted value  and the ground truth 
y, and square the result. We don’t have to worry about the  constant. 

14. Again, I’m simplifying for ease of explanation. In practice, many neural networks use 
what are called mini batches, where samples are not presented one at a time but in groups 
of samples from the larger set. Instead of calculating the loss of each sample and updating 
the weights based on this calculation, we divide an epoch into small batches of samples. 
For example, for a data set of one thousand samples, we might create mini batches of 
one hundred samples. In this case, the epoch lasts for ten mini batches, where the loss is 
calculated for each sample in the mini batch, and the weights of the model are updated 
based on the loss over the entire mini batch. Updating the weights based on the loss over 
the mini batch instead of per sample makes the training process more likely to converge. 
Updating the weights based on the loss for each sample means that noise in the data can 
greatly affect the training process.
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It doesn’t affect the loss, or the point we are trying to make; it is simply 
there to make further calculations simpler. 
 You might be wondering why we even need a complicated loss 
function. And why do we need to square the difference between the 
predicted value and the ground truth? Why can’t we just calculate the 
difference between the predicted value and the ground truth and be done 
with it? (Technically, this would still be a function, although admittedly 
a simple one.) The simplest answer is to say that squaring the difference 
helps us deal with negative values. For example, if the predicted value is 
smaller than the ground truth, the difference would result in a negative 
value. Squaring the value helps us get rid of the negative. The more 
accurate answer is that loss functions are carefully constructed because 
they must be differentiable, and they must be formulated to maximize 
the likelihood of predicting the correct outputs based on input features 
belonging to the same distribution as the training data. In other words, it 
helps to frame the problem we are trying to solve in terms of probabilities. 
Specifically, we need to show (mathematically) that by minimizing the 
loss function, we maximize the likelihood of predicting a correct output 
for a given input sample. When we frame the linear regression problem in 
terms of probabilities and calculate a method to maximize the likelihood 
of predicting the correct outputs based on input features, we end up with 

. But more on this later.
  Once we have selected a loss function, to systematically adjust the 
model parameters in a way that minimizes the loss over the training 
epochs, we need to use derivatives. That’s right. We can finally answer 
the question that high schoolers have been asking for ages: When will I 
ever need to use calculus? To adjust the model’s weights, most AI training 
algorithms, including neural networks, use derivatives. We explain this 
process next by trying to understand the following equation:
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 If we can control our survival instincts pushing us to flee the sight 
of an equation, we will see that this is in fact a simple concept. The 
first thing we need to do is identify the elements we are familiar with. 
We know that θ refers to the model weights. In a neural network, these 
are the weights of the connections between each neuron. In a linear 
regression algorithm, θ is the slope of the line we are trying to find.15 
L is the loss function. These are elements that we have already seen. 
Before we get into what  or  means, we can deduce that the equation 
is trying to show us how to calculate a new weight. In other words, in 
the case of linear regression, it is telling us how to update the slope of 
the line we are trying to find. The equation shows us that to calculate 
the new value for the θ parameter (i.e., to calculate a new slope for our 
line), all we have to do is take the current value for θ (if this is the first 
iteration; remember that this is a randomly chosen value) and subtract 
the derivative of the loss function with respect to the current θ value. 
That is, the right side of the equation is updating the left side of the 
equation. The θ value on the right of the equal sign represents the 
current slope of the line, and the θ value on the left side represents the 
updated value for the next training iteration.  is simply the sign for 
partial derivative. Let’s try to unpack why derivatives help us update 
our model parameters.
 First, let’s remember what an equation is really telling us. Consider 
the following equation: y = x. An equation shows us the relationship 
between independent and dependent variables. If we were to plot a 
graph of the value of y given any value of x for the equation y = x, we 
would get the graph shown in figure 3.8. A different equation, such 
as y = x2, will show a different line, in this case a parabola (fig. 3.9).

15. Note that we must perform the same calculations for each θ in a model (i.e., θ1 and θ0). To 
make our explanations easier to follow, we will generally ignore the y-intercept (i.e., θ0) and 
focus on the slope (i.e., θ1). Just remember that we must perform the same calculations for 
every weight in a model (in a neural network, this can mean millions of θ values), and this 
includes the biases.
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Figure 3.8  A plot of the line y = x.
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Figure 3.9  A plot of the line y = x2.

Regardless of type, the line produced by an equation describes the range 
of possibilities for the dependent variable (y) given any possible values 
for the independent variable (x). When we are dealing with a simple 
equation of a single independent variable x, our equation describes a 
one-dimensional world. This is why the graph of the equation is a line. 
And this is the case in simple linear regression where the data samples 
are described by a single feature. It does not have to be a straight line, 
but it will be a line. If the equation is slightly more complicated and 
includes two independent variables, such as y = x1 + x2, then the equation 
describes a surface in 3D space—remember our vectors in N-dimensional 
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space from chapter 1, where we described a vector consisting of a line 
originating at the origin and traveling through an N-dimensional space 
where x1, x2, x3 describes how much the vector should move in each 
dimension. This surface would not look like a line; it would look like a 
topological surface that describes the possible values of y considering all 
the possible values of the x1 and x2 dimensions. 
 When dealing with AI, where our input vectors deal with 
multiple dimensions (i.e., x1, x2, . . ., xn), our equations describe a 
multidimensional surface of possible y values. In these cases, linear 
regression is still finding a best-fit line through the data, but it’s a line 
in a multidimensional surface. It’s important to understand that, while 
we have been using a simple example where the data samples contain 
only a single feature (the houses in the data set are only described by 
one dimension, the number of bedrooms), data samples are invariably 
described by multiple features (the number of bedrooms, location, 
proximity to hospitals, etc.). The multiple features add extra dimensions 
to the equations that AI algorithms need to solve. We are using a single 
feature to simplify the explanations, but the algorithms are the same 
whether we are dealing with one feature or multiple features. The math 
is just easier with a single feature.
 Now let’s go back to our loss function, . This 
equation is describing all the possible loss values our model can 
produce for all possible input samples and all possible parameters θ. 
If we close our eyes (you might have to finish reading this sentence 
before closing your eyes), we can try to imagine a surface floating in 
space, and this surface has some topological features like mountains, 
planes, and valleys. The mountains are areas where the loss is really 
high, and the valleys are areas where the loss is really low. We can 
think of the valleys as describing the times (combinations of θs and 
inputs) when the model makes the correct prediction (that’s why the 
loss is low) and the mountains as the times when the model makes 
incorrect predictions, causing the loss value to be high. Our goal in 
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our training algorithm is to traverse this terrain in search of the valleys. 
Let’s look at the equation again: . Considering that 
the input features (x) and the ground truth (y) cannot be adjusted, 
the only variable we can alter to ensure L remains low is θ. That is, 
our goal is to adjust θ so that the loss for each sample belongs in the 
valleys of the loss surface, not in the mountains. The question then 
is, How do we adjust θ in a direction that moves us toward the valleys 
of the loss function?
 Instead of a multidimensional surface that we can’t even picture, 
let’s assume our loss function describes a line. Figure 3.10 shows what 
this surface might look like. We can now assume that during our 
training, when we calculate the loss L for a given sample, depending 
on what the features x and the θ parameters are for that sample, 
the loss will be in some place along that curve. Let’s consider what 
happens during the first iteration. 
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Figure 3.10  What a loss surface for  might look like if the input 
data sample contains a single feature (i.e., x1). 

 We randomly initialized our parameter θ, so let’s assume that 
after calculating the loss for the first training epoch, our calculated 
L is at point P in figure 3.10. Point P is high on the curve because 
our loss is large at this point. Our goal is to find a systematic way 
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such that every training step we take moves from point P closer to 
point Q. Why do we want to move to point Q? Because point Q is 
the lowest point in the loss surface. Instead of simply accepting what 
I have just said, try to visualize what this means. The loss surface 
describes all possible loss values we could encounter during training. 
When the loss is high, our predictions are very far from the ground 
truth. When the loss is small, our predictions are very close to the 
ground truth. And the goal of training is to drive our predictions 
closer to the ground truth. Another way to think about this is that 
we want to traverse the loss surface from the high place where we find 
ourselves to the lowest point in that surface. To do this, we (again) 
use calculus.
 Remember that calculus helps us measure rates of change. Let’s go 
back to our equation for adjusting the model parameters:

To solve this equation, we need to calculate the partial derivative of 
the loss function with respect to parameter θ. This calculation tells 
us how changes to θ affect the loss L. Another way to say this is to 
say that for some loss P, we want to figure out how adjusting θ affects 
the loss: Does increasing θ also increase the loss to some point higher 
than P, or does it decrease it? Going back to figure 3.10,  tells us 
how changes in θ move P farther away or closer to Q. One way to 
think of this is that  is the slope (in a multidimensional surface, we 
call this a gradient) of the L surface at point P. To move from P to 
Q, we want to calculate the slope of the curve. The slope tells us the 
direction in which we want to move. Here is why: At point P in our 
graph, the slope of the curve will be negative, so  will be a negative 
value. Note that to calculate a new value for θ, we take the current 
θ and subtract the slope of the surface. But if that slope is negative, 
then θ – (– slope) becomes θ + slope. So the new θ value will be 



156 Is tHE ALGorItHM PLottInG AGAInst us? 

slightly larger. If we look at figure 3.10 then, increasing the value 
of θ is exactly what we want to do to get to point Q. As θ increases, 
the value of L decreases, and the update nudges us in the downward 
direction toward point Q. 
 But what if instead of finding ourselves at point P originally, 
we found ourselves at point R? Then, the slope  of our curve at 
point R would be a positive value. To calculate a new value for θ, we 
calculate θ – slope. This has the effect of decreasing the value of our 
new θ. This makes sense because, going back to our curve, to get to 
point Q, we want to decrease the value θ, which decreases the value 
of L. In chapter 1, when we described updating the model weights as 
adjusting some tuning dial, this is exactly how we turn those dials.
 This process of calculating the gradient (the slope in a 
multidimensional surface) of the loss surface and moving in the 
downward direction of the gradient toward a minimum loss value is 
called gradient descent. The state-of-the-art method today for training 
artificial intelligence models and updating the model parameters to 
minimize a loss is gradient descent. In a neural network, the model is 
composed of multiple layers, and each layer has many neurons with 
connection weights that must be updated. The process of updating 
those weights is the same as what we have just described. We must 
calculate the partial derivative of the loss function with respect to 
each weight to update each weight value. Since neural networks are 
composed of multiple layers and we must perform this calculation for 
each layer from the output layer all the way back to the first layer, we 
call this process gradient descent through back propagation. 
 I find gradient descent through back propagation to be one of 
the most elegant solutions in computer science. To understand its 
significance, it helps to remember that none of this was obvious. For 
decades, neural networks seemed impractical because there wasn’t a 
good method for updating the weights on large networks. Someone 
had to come up with the idea of using calculus in this way and have 
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the conviction to try it.16 And to think that this actually works should 
give us hope and excitement for what we can achieve! 
 Going back to our linear regression model, by adjusting the θ 
parameter systematically so as to minimize the model’s loss, what we 
are really doing is adjusting the slope of the best-fit line. Recall that 
our linear regression model is simply a line with equation y = θ1x 
+ θ0. When the slope of the best-fit line was randomly chosen, the 
predictions were bad because the line did not accurately represent (or 
fit) the trend in our data. But as we adjust the slope of the line, the 
predictions become better as the line eventually locks in on the trend.

PROBABILISTIC INTERPRETATION OF LINEAR  
REGRESSION

We started this chapter discussing probability distributions, and we 
showed how understanding them can help us identify trends in data, 
which helps make predictions about new data. We saw that if we 
can assume that the data we are analyzing is distributed according 
to some known probability distribution, then we can try to discover 
the parameters of that distribution. Now we are going to see how 
linear regression is related to Gaussian distributions by describing a 
probabilistic interpretation of linear regression. We have already seen 
the geometric interpretation of linear regression, and we know how 
to train a linear regression model on a data set to make predictions. 
Why do we need to understand the probabilistic interpretation?

16. It is difficult to pinpoint who “invented” gradient descent through back propagation 
because, as is often the case, many people over decades came up with contributing ideas, 
each building on previous work. Yann LeCun, currently chief AI scientist at Meta, is often 
credited with creating the first practical implementation of back propagation in 1989, 
while working at Bell Labs. Arthur E. Bryson and Yu-Chi Ho are credited with inventing 
back propagation to train deep-learning models in 1969. But it all depends on how we 
define “invented” and where in history we draw the line.
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 The purpose of this book is to help us understand the elegance of 
artificial intelligence systems—and their limitations. The probabilistic 
view helps guide our intuition for how accurate our predictions are 
and how much we should trust our system. We need to remember that 
the purpose of artificial intelligence is to help us build models that can 
make predictions we can use to then make decisions about the future. 
If we consider these AI systems magical “black boxes” with inherent 
intelligence, then we are setting ourselves up for disappointment 
when their predictions fall short of reality. This is what happens when 
modeling systems make predictions about the weather and, instead 
of sunshine, we see rain; or more recently, when modeling systems 
predict a fall in COVID-19 infection rates, but instead the infection 
rates increase. In these cases, most people blame the systems as useless 
and reject them altogether. Once we understand how these systems 
work, we see that whether the predictions prove accurate or not says 
little about the system’s intelligence. Predictions are based on the 
system’s ability to model a distribution. If the system was trained 
using a data set that represents a good distribution of outcomes, then 
the system should be able to make accurate predictions. If the system 
was trained using a data set that isn’t very representative of reality, 
however, then the predictions will not be very accurate. 

For example, suppose we trained our linear regression model to 
predict the height of fifteen-year-old boys again. But for the training 
data set, we chose one thousand boys all belonging to different 
basketball clubs. As we might imagine, in this case the algorithm will 
be biased toward tall boys, since presumably basketball players are 
very tall (or at least taller than average). If we then ask it to predict the 
height of a new fifteen-year-old boy who walks in off the street, the 
prediction might prove inaccurate. If, instead, our data set is chosen 
from a random population of fifteen-year-old boys from the city of 
Toronto, our algorithm might prove more accurate at predicting 
heights of fifteen-year-old Torontonians. In both cases, it is the same 
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system; in one case it succeeds, and in another it fails; and it all 
depends on the training data. (So we may well ask, Where exactly is 
the intelligence?) Note that while our algorithm might prove accurate 
at predicting the height of random fifteen-year-old boys in Toronto, 
that same trained algorithm would prove highly inaccurate in other 
cities around the world. This is the problem of bias, which we discuss 
more in the next chapter.
 So what does linear regression have to do with probabilities? 
We discussed the method for training a linear regression model, and 
it involved calculus. Where do probabilities factor in? Probabilities 
factor into the loss function . We are not going to 
derive the loss function because that process is quite complex and 
beyond the scope of the book, but we will intuit how probabilities lie at 
the heart of our training algorithm. First, let’s consider a hypothetical 
data set where the data lies exactly on our predictor line. And I don’t 
mean that just our training data set will lie on the line (see fig. 3.8). 
I mean that we are guaranteed that all the data, including the real-
world data, will lie exactly on the line. That is, for every data sample, 
y = θx. In this case, we don’t really need gradient descent, do we? All 
we need to do is pick two data points and calculate the slope of the 
line that runs through them. Since the data points line up perfectly 
on the best-fit line, the slope of the line between any two points will 
perfectly describe the line for all points.
 The reason we need gradient descent is because the data, although 
it can exhibit a linear relationship, contains noise. This noise means 
that the data points won’t exactly lie perfectly on our best-fit line. If 
we were to pick two random data points, calculate the slope of the 
line between them, and use this as our predictor, the predictor might 
not be very accurate since the line running through any two points 
will not necessarily result in a best-fit line (fig. 3.11). It is because of 
this noise that we use gradient descent to find the best-fit line. 
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Figure 3.11  A line running through two random points in the data set. The black 
line is clearly not a best-fit line, yet it runs through two points.

 Gradient descent explains how to update the model weights by 
minimizing the loss, to improve our results. But it says very little about 
why this works or why we have used a specific loss function. Suppose 
we grabbed a random mathematical function and used it as our loss 
function. Would that work? Most likely it would not. To develop a 
loss function effectively, we typically start by expressing the problem 
we are trying to solve in terms of probabilities. In our case, we want 
to calculate the probability of a data sample having label y given a set 
of features x, using a model with parameters θ—mathematically, we 
express this as P(y|x; θ). We have already said that our data samples 
contain some noise. We will call this noise ϵ and can express it more 
formally as y = θx + ϵ. Note that y = θx describes a line where the data 
samples lie exactly on the line, which can be thought of as y = θx + ϵ 
when ϵ is 0. When ϵ is not 0, there will be some “jitter” in the data, 
sprinkling the data points about the line.
 Here we assume that this noise is distributed following a normal 
distribution. Recall that, according to the central limit theorem, this 
is often an OK assumption to make for observations that depend on 
many processes. So although we don’t know the noise for each data 
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sample (i.e., we don’t know exactly how far each data sample will be 
from the line), we assume that the noise follows a normal distribution. 
Armed with this information, we can then discover the parameters of 
that normal distribution: the distribution’s mean and its variance. The 
mean and the variance of the distribution then allow us to sample from 
that distribution, which is essentially what the best-fit line is doing. We 
can think of the best-fit line as sampling from the distribution of noise 
in our data, resulting in a line that runs as close as possible to all the 
data points. If we restate the linear regression problem as calculating the 
probability that for each data sample, the features x belong to label y, or 
P(y|x; θ), we can start by writing the equations in terms of the normal 
distribution equation. Then, we can proceed to calculate the maximum 
likelihood that features x belong to each label y. This process can fill 
several pages with algebra; I will spare you that and just let you know 
that if we do so, we realize that to maximize the likelihood that our 
features map to the correct labels, it is enough to minimize a relatively 
simple equation. This equation is the loss function .
 In essence, an artificial intelligence algorithm is simply a good 
probability estimator, and it uses probability theory to develop the plan 
for estimating an appropriate answer to our questions. Once we have 
established our plan for calculating the probability of our results being 
accurate, we can use calculus and gradient descent to adjust the model 
weights so that we can correctly follow our plan. This is important to 
understand if we want to stop thinking of artificial intelligence systems as 
some metaphysical entities that, for all we know, “might be planning to 
enslave us.” Understanding the inner workings of these algorithms reveals 
that the foundation of AI is probability—and, therefore, also uncertainty. 
This means that while we can rely on AI systems to help accelerate much of 
the work we do, we must first understand their strengths and weaknesses 
before we can accurately estimate the benefits they represent. Even when 
they function well, it only means that, based on their training data, there 
is a high probability that their answer is correct.
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LOGISTIC REGRESSION

In the previous section, we learned that linear regression is used to 
forecast values by finding trends in a data set. It constitutes one of 
the main pillars of artificial intelligence, and it is the predictive basis 
for many neural network architectures. The other pillar of artificial 
intelligence is logistic regression. Logistic regression—a classification 
algorithm—has been around for a long time. One of the most popular 
tasks for AI algorithms is to classify items into different categories. 
Logistic regression lets us classify items into two categories. We might 
have a data set containing patient information: age, blood pressure, 
blood sugar levels, smoking habits, drinking habits, family history of 
heart disease, and many other possible indicators of heart disease. Our 
task in this case might be to classify the patients in the data set as likely 
to suffer from heart disease or not. Another example where logistic 
regression might be used is in the hospitality industry. Suppose the 
owner of a resort wants to identify the guests that are most likely to 
return to the resort based on some data about the guest: length of stay 
at the resort, amenities visited, money spent in the resort, age, and 
so on. Using this information, the resort might want to tailor their 
services to ensuring that those guests indeed return, or they might want 
to reach out to the guests that the algorithm predicts are unlikely to 
return, to see if they can change their guests’ minds.
 In computer vision, logistic regression or softmax regression (a 
generalized form of logistic regression with multiple categories, as 
first mentioned in chapter 1) is used to classify images into different 
categories: cats, dogs, cars, trees, and so forth. In the last layers of 
almost all classification neural networks, there is either logistic or 
softmax regression. We do not need a neural network to perform 
logistic regression. We can use logistic regression directly on a data set. 
Neural networks are used to reduce the size of the input vector into 
something that is more manageable for logistic regression to handle. 
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Recall from figure 3.1 (way back at the opening of the chapter) that 
the reduced form of the input is what we call the latent vector. In rare 
cases where the nature of the data is simple, and the samples are not 
described by many features so that the input vectors are small, we can 
skip the neural network and perform logistic regression directly.
 Similar to linear regression, with logistic regression our task is 
to find a line. In this case, however, instead of finding a best-fit line 
through the data, our task is to find a line that separates our data set 
into two categories: 0 and 1 (or cats vs. dogs, or blue vs. orange) (fig. 
3.12). The line serves as a classification model because when we get a 
new data point, we can predict its category based on which side of the 
line it falls on. To train a logistic regression model, we need a training 
data set with labeled samples similar to what we did in the linear 
regression case. A data set that is used for classification has categorical 
labels, whereas linear regression uses numerical labels. Numerical labels 
represent quantitative values that a model needs to predict (e.g., the 
price of a house). Categorical labels represent categories that a model 
needs to predict, for example, 0 or 1 to denote if a patient has heart 
disease or not, or 0, 1, 2, 3 for cars, cats, dogs, trees. 

x1

x2

Figure 3.12  A logistic regression model separating two classes of samples (blue dots 
and orange dots) into different categories. In this figure, x1 and x2 are simply the two 
features describing our 2D data.
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 At this stage of our discussion, we will stick to binary classification 
problems as it makes the conversation easier, but multiclass 
classification follows the same concept. When we were working with 
linear regression, our goal was to find a line that best fit the data, 
and the line itself became the model. To find the line, we started 
with the equation of a line, y = θ0 + θ1x, and our training process 
involved discovering our θs. Once we discovered the values of our 
θs, to predict some numerical value for a new x, all we had to do was 
plug x into the equation and solve for y. Simple. 

With logistic regression, the concept is similar, but the equation 
is different. Remember that logistic regression is used for binary 
classification, where an output of 0 corresponds to class A and an 
output of 1 corresponds to class B, so the predictions of the model 
must be between 0 and 1 for any value of x. What we need, then, is an 
equation that can output a value between 0 and 1 for any given input. 
For this we use an equation called the logistic function: y = . The 
logistic regression algorithm gets its name from this function. The 
advantage of the logistic function is that it produces values between 
0 and 1 for any values of x (fig. 3.13). To understand the concepts of 
classification, we don’t have to dig too deeply into this equation. The 
equation is there simply to help us turn input values (these are the x 
values in the exponent of e) into a range of 0 to 1 output values. The e 
value, also known as Euler’s number, is a mathematical constant that 
can be used to express the natural exponential function f(x) = ex. If 
you are interested, googling Euler’s number and learning about the 
natural logarithm can be a thrilling experience, but for our purposes, 
we can leave it at that.
 For logistic regression, our goal is still to find the parameters of the 
model—the θs. We want to find θs such that our predictions for y are 
close to 0 for inputs whose labels are 0 and close to 1 for inputs whose 
labels are 1. If we think of our goal as still finding a line, in this case our 
line won’t be a best-fit line. The points along this line are not the model’s
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Figure 3.13  Possible values of y ranging between 0 and 1 for any input x for the 
logistic function, .

predictions, as in the case of linear regression. Instead, with logistic 
regression, the line represents the decision boundary that best separates 
the two classes. For example, consider a data set of images of cats and 
dogs. If we can interpret each image as a vector in some space (images are 
made up of pixels, and each pixel has a value, so we could consider the 
pixel array of an image as a vector in some multidimensional hyperspace), 
and if we were to plot the images of cats and dogs in a graph, we would 
see that the images of cats are somewhat bunched close together, and the 
images of dogs are also bunched close together, and for the most part, the 
two groups are far away from each other. This might sound familiar as we 
have discussed vectors as lines traveling through space in some direction, 
where vectors pointing in a similar direction describe similar data. At 
some point in this space between the two groups runs an invisible line 
that separates the two groups. The farther away you go from the line in 
one direction, the more doglike the images look; the farther away you go 
from the line in the opposite direction, the more catlike the images look. 
This is the line we are trying to find with logistic regression. We are trying 
to find the line that best separates a group of samples into two groups.
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 Initially, before we begin training the algorithm, our θs are randomly 
initialized. We can expect this to produce a line that will be randomly 
placed in our sample hyperspace, and therefore it won’t be classifying 
our data very well at all. The training process is like the linear regression 
process. We use a loss function, and the loss function tells us how far our 
predictions are from the ground truth label for that sample. Remember 
that our training data set consists of data samples and labels. So we 
would typically have thousands of images of cats labeled 1 and thousands 
of images of dogs labeled 0. Early in the training process, when our θ 
values are not well adjusted, the predictions for a cat image might be a 
value that’s closer to 0, maybe 0.27. The loss function helps us calculate 
how far 0.27 is from the desired label, 1. As we discussed in the linear 
regression section, choosing the right loss function for a problem is the 
most important step in the learning process. Typically, the loss function 
is related to a certain probability distribution we want to model. The loss 
function for the logistic regression algorithm is called the logistic loss, or, 
sometimes, the binary cross entropy loss, and it is written as follows:

Again, there is no reason to panic. The equation is, in fact, quite simple. 
We do not have to understand all of it. Here is all we need to know: y is 
the ground truth label for a sample, and  is the model’s prediction 
for a sample with features x. Recall that we already discussed this when 
interpreting the regression loss;  is simply what we call our model. 
It is basically our hypothesis for what the input features map to. We 
don’t have to look too deeply into the mathematics behind that equation; 
all we need to do is understand the intuition. The only element in the 
function we might not have seen yet is the logarithmic function log( ), 
and thankfully calculators have a button for this—whew! 
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 Let’s see with an example how this function might be used. Suppose 
we have an image of a cat with a ground truth label y = 1. What happens 
if the model predicts 1? In this case, y = 1, and .

If our model predicts 1, then our calculated loss becomes 0. This makes 
sense because a prediction of 1 matches the ground truth label in our 
example, so we would want the loss to be 0. A loss of 0 means that in 
this training iteration, we do not have to adjust our model parameters. 
After all, our prediction was exactly right, so why would we want to 
adjust our weights? But what would happen if the model predicted 0 
instead of 1? In this case y = 1, and .

If our model predicted a 0, our loss would be 4.17 In this case, our loss 
is higher than 0. This also makes sense because the model predicted 0 
where the ground truth was 1, so we want our loss to signify that our 
model has made a mistake and requires correction. How do we adjust 
our model? Similar to how we responded to a like situation in linear 
regression, we use the gradient descent algorithm to find the values of θ 
that produce the smallest loss for the entire data set. As a reminder, the θ 
parameters are updated for each training iteration as follows:

The new value of θ is equal to the current value of θ minus the gradient 
(or rate of change of the loss with respect to θ) times a learning rate 
parameter. Again, to explain this more simply, we use calculus to find 

17. Mathematically, log(0) is undefined, so if our model  predicts a value of 0, our 
training algorithm must add a small quantity to keep the value close to 0, just not 0. 
Therefore,  is set to 0.0001 in our example.
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the rate of change of the loss with respect to the current value of θ. This 
means finding out how much the loss changes if we change θ a little bit. 
The rate of change tells us whether increasing θ increases or decreases 
the loss. We want to change θ in the direction that decreases the loss, as 
this leads to accurate predictions.
 In the linear regression example, we saw α in the gradient descent 
equation and deferred on its explanation, as we wanted to focus on 
describing the most important aspects of the algorithm. Here we see 
it again. The parameter α is what we call the learning rate parameter. 
It is a tunable parameter that specifies how much we should change θ 
in the direction that minimizes the loss. Finding the right value for α 
is very important. If α is too large, as we are traversing our loss surface 
(recall our thought experiment where we imagined the loss surface as 
some topological terrain with mountains and valleys), we might take 
too large of a step. A very large step might be akin to jumping from 
one mountain peak to another. These jumps risk our overshooting 
the valleys (the loss minima), so we end up in another part of the loss 
surface where the loss is large. Large jumps can lead to algorithms 
that never learn (or never converge). Conversely, we do not want our 
descent into the valleys to be too timid. If the steps we take in our 
descent are too small, it may take too long to converge on the loss 
minima. Imagine walking down a mountain by taking baby steps. 
Unfortunately, finding the right learning rate value can be more of an 
art than a science. It is called a tunable parameter, or hyperparameter, 
because we must choose the value ourselves. The training algorithm 
does not attempt to find it. In practice, we run multiple experiments 
or training cycles using different learning rate values. By running 
multiple experiments, we can find the right step size that gets us to 
convergence in a practical amount of time. 
 Let’s do a quick recap on logistic regression. Logistic regression 
is a classification algorithm that helps us find a line that divides 
a group of data samples into two classes: the class to the right of 
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the line and the class to the left of the line. To train the algorithm, 
we minimize the following loss function using gradient descent, 

. Once the algorithm is trained, 
to classify a data sample, we ask the following question: . We 
present the logistic equation with our sample’s features x and the 
learned parameters θ and calculate our output. If the result is close to 
1, our prediction is class 1. If the result is close to 0, our prediction is 
class 0. It is that simple! But why does it work?
 When we discussed linear regression, we described the probabilistic 
interpretation of the learning process and explained that, in essence, 
minimizing the loss function was akin to maximizing the likelihood 
that the sample features mapped to the result we wanted the model 
to predict. And this was made possible by relating the loss function 
to a probability distribution, because probability distributions help 
us calculate the probability of making certain observations. So, if you 
have a problem and you don’t know the solution to that problem but 
you can calculate the probability that a solution is correct, you might 
not have the final solution yet, but at least you have a path forward. In 
fact, you have more than that. You have the ability to measure success 
in each step that you take toward a working solution. This is the power 
of probability distributions!
  In the linear regression case, we chose the normal distribution 
because we assumed that the noise scattering the data samples about our 
predictor line was distributed according to the normal distribution. We 
said that we can think of minimizing the loss function as being similar 
to discovering the parameters of the normal distribution describing 
our data, and once we learned those parameters, we could sample from 
that distribution to guide our best-fit line. It turns out that for logistic 
regression, the problem we must solve is very similar to our problem in 
linear regression. We also have a loss function, and we must minimize 
the loss function to update the model parameters following the same 
gradient descent algorithm. So what is the difference between linear 
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regression and logistic regression? If the training process for both is the 
same gradient descent algorithm, how come in one case we get a best-
fit line and in the other case we get a line separator? The difference, of 
course, is the loss function. 
 The logistic loss is different from the linear regression loss. This 
is because logistic regression is modeling a different probability 
distribution than linear regression. For logistic regression, the 
probability distribution we are trying to model is the Bernoulli 
distribution. The Bernoulli distribution describes situations where we 
are performing a single trial (e.g., tossing a coin or predicting a cat or 
a dog) and the trial can result in one of two possible outcomes: success 
or failure. The Bernoulli distribution helps us predict the likelihood of 
either of those outcomes occurring. Let’s see how our loss function for 
logistic regression relates to the Bernoulli distribution.

PROBABILISTIC INTERPRETATION OF LOGISTIC  
REGRESSION

First, we will try to develop an intuition for how this sort of distribution 
can be described. Since we are discussing cases that can only have one 
of two possible outcomes—success or failure—we can describe the 
probabilities as follows. Let’s say that the probability of success for a 
given experiment equals some probability p. The probability of failure, 
then, must be 1 minus the probability of success. More formally this can 
be described as P(success) = p, and P(failure) = 1 – p. As an example, we 
can consider what happens when we are tossing a fair coin. First, we can 
assign success to flipping heads in a single trial and failure to flipping 
tails. The probability of the coin landing heads would be 50 percent, 
so P(success) = 0.5. The probability of failure, then, is P(failure) = 1 – 
0.5 = 0.5. This makes sense because tossing a coin results in 50 percent 
probability for both heads and tails. 
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Note that the probability of an event occurring does not have to 
be 50 percent. Here is an example where the probabilities of success 
or failure are not equal. Suppose we are describing the chances of 
a particular Toronto-bound train being delayed. We know from 
experience that the train is punctual 95 percent of the time. We can 
describe the probability of the train being on time as P(success) = 0.95 
and the probability of a delay as P(failure) = 1 – 0.95 = 0.05. 
 To make our lives easier, we can also combine the P(success) 
and P(failure) expressions into a single equation: P(x) = px(1 – p)1 – x. 
Let’s use this equation on our train example to show that it is truly 
combining both P(success) and P(failure). We can define x = 1 as 
success and x = 0 as failure. We can say that the probability of the 
train being on time (i.e., success) is P(1) = p1(1 – p)1 – 1. Any number 
elevated to the power of 0 is 1, so P(1) = p1(1 – p)0 = p. This is exactly 
P(success) = p, which is 95 percent probability of our train being 
on time. Now let’s check on the failure case. P(0) = p0(1 – p)1 – 0 = 
1 – p. This is exactly P(failure) = 1 – p, which is 1 – 0.95 = 5 percent 
probability of the train being delayed. We have shown that P(x) = 
px(1 – p)1 – x combines the probabilities of success and failure for a 
Bernoulli event. 
 You can now also start to see some similarities between P(x) = px(1 
– p)1 – x and our loss function . We 
are getting closer to explaining where our loss function comes from. 
If you can already see that the loss function is a restatement of the p 
elements in the Bernoulli equation in terms of our model and data 
labels, then you are done. You should now understand the origins of 
the logistic regression loss function. If you don’t see it yet, don’t worry. 
We will explain it next. Let’s see one more example.
 Suppose there is a place somewhere on earth where it rains once a 
month, and every day has an equal chance of rain. If we pick any day 
of the month, the probability that it will rain on that day is 1/30, that 
is, P = 1/30. Since we are trying to predict rain, let’s call success 1 and 
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failure 0 so that P(1) = 1/30. The probability that it won’t rain on that 
same day is P(0) = 1 – 1/30. 
 Now suppose that we are not lucky enough to know the probability 
that it will rain on any given day of the month. In other words, no one 
has told us that the probability is 1/30. Instead, we are given a data 
set containing the days that it rained in every month for the last ten 
years, and we are asked to create a model that can predict whether it’s 
going to rain next Thursday. What we want is to build a model that can 
learn that probability on its own. In this case, we can treat the data as 
being distributed following the Bernoulli distribution. We can do this 
because the Bernoulli distribution describes events that only have one 
of two outcomes, and for each day, it either rained or it didn’t. We can 
then build a model that tries to find the parameters that describe the 
Bernoulli distribution for this data set. And once we do that, we can 
predict the likelihood that it will rain next Thursday. So how do we go 
about doing this?
 We start with the Bernoulli equation P(x) = px(1 – p)1 – x. Remember 
that we don’t know the probability of when it will rain; all we have 
is a data set. We can rewrite the Bernoulli equation in terms of our 
model and training process. P(x) really means the probability that for 
some sample x, the model predicts the correct label y. So P(x) is P(y|x; 
θ). Recall that we can interpret this statement as the probability that 
sample x maps to label y in a model with parameters θ. The right side 
of the Bernoulli equation can also be rewritten in terms of our model. 
We know p is simply the probability of some event happening, which 
in terms of our model refers to the model predictions. Therefore P(x) = 
px(1 – p)1 – x can be rewritten P(y|x; θ) = y(1 – )1 – y. These are 
all terms we should be quite familiar with by this time. Now we need 
to train our model to maximize the likelihood that our predictions 

 produce the correct output for all samples x. If we devote the next 
three pages to algebra and develop all the necessary steps—I will spare 
you—we can show that maximizing the likelihood of our predictions 
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being accurate is the same as minimizing the output of the following 
equation: . Interestingly, this just 
happens to be our loss function.
 What have we achieved in this process? We have learned that 
whether we are performing linear regression or logistic regression, the 
training process of an AI model is very similar. All that changes is the 
loss function. The loss function is typically related to a probability 
distribution, and probability distributions are the secret sauce of 
artificial intelligence. There is nothing else that drives an AI model’s 
predictions. There is no metaphysical “intelligence.” There are no 
premonitions or revelations. When we lift the veil and peek into every 
single operation that is happening inside our AI models, all we see 
is math. The reason these models have any right to work at all is not 
because of luck or because, by some dark magic, a mess of calculations 
suddenly learns to recognize patterns. The reason they work is because 
the models learn the probability that each sample belongs to each of the 
output categories. And the models can learn those probabilities because 
of what mathematicians and statisticians have done over centuries to 
describe probability distributions. 

Probability distributions are great at describing events in the world, 
and it turns out that many events that appear quite distinct can still be 
described by the same probability distribution; all that changes are the 
values of the parameters for the distribution. For example, we can use 
the normal distribution to model population height, but we can also 
use it to model the birth weight of newborn babies. The parameters 
of the distribution—the mean and variance—will be different for 
the height and the birth weight distributions; the parameters of the 
distribution will also be different for each country. But knowing that 
we can use the normal distribution to model those processes means 
that once we learn the mean and variance for the distribution, we don’t 
need to know exactly the birth weight of every baby in a given country; 
we can approximate it. If I find anything truly inspiring and ingenious 
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about AI, it is the realization that we can use these world models that 
are probability distributions as the predictive engines for mathematical 
approximation functions. We call these mathematical approximation 
functions AI models.

We now find ourselves at the end of a math-intensive chapter. Thank you 
for reading thus far. My goal with this book has been to describe how our 
most successful artificial intelligence algorithms work. The mathematics 
behind these models can seem daunting at first, but I hope to have 
shown that, once we understand the intuition behind the calculations, 
understanding how and why these systems work is not so difficult. 
In this chapter, we described in detail the functional aspects of neural 
networks—the bit that makes them work. In the previous chapters, 
we described neural networks as funnels that compress information 
from the input layer into a latent vector representation. This latent 
vector representation is a compression of the input. In other words, it 
is a distilled version of the input, where the neural network has learned 
to discard bits of information that are unnecessary. This latent vector 
representation is used in the last layer of the neural network to perform 
either classification or some form of linear regression. In this chapter, we 
also described how linear regression and logistic regression—the most 
common form of classification—work. We showed that if the data we are 
trying to analyze is simple and the dimensionality of the feature vectors is 
low enough (i.e., if each data sample is described by a handful of features), 
we can use linear or logistic regression directly without requiring a neural 
network. We use neural networks when the dimensionality of our data 
sample is so large, with so many features describing the data samples, 
that we require some form of compression first. 
 You should now have a good foundation for understanding the 
intuition behind most state-of-the-art artificial intelligence algorithms. 
Is it a technical understanding that enables you to go off and do 
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research or write your own AI algorithms? No, but if that’s your goal, 
then the last three chapters should have illuminated the path ahead and 
shown the direction to follow to expand on your technical knowledge. 
Now you know what gradient descent means and what probability 
distributions and loss functions are. You can continue to dive into 
these topics and become an engineer or scientist if you so wish. If that’s 
not your goal, however, if your goal is simply to understand how neural 
networks function so that you can have an intelligent conversation and 
formulate your own opinions about the ethics of AI, then the last three 
chapters should have given you the tools to do exactly that. 

In chapter 1, we learned about the history of the neural network 
and its basic architecture. In chapter 2, we learned about computer 
vision and a popular architecture called the CNN, which is great for 
image processing. We learned that we can combine a CNN with a 
fully connected network—the architecture from chapter 1—and 
build good image-classification algorithms that power many of today’s 
computer-vision solutions. In this chapter, we learned what makes 
all that possible: probability distributions, calculus, and optimization 
through gradient descent. Now we know what neural networks are: 
mathematical approximation functions. And we know what they are 
not: semiconscious creatures salivating at the chance to break loose 
from virtual shackles. In the next chapter, we discuss what we can 
do with AI and, now that we know how it works, what our ethical 
responsibilities are. 

Is there anything to fear about AI, or is it all fair game?



I s the algorithm plotting against us? That’s the question that 
started it all.

 As early as in the introduction, we revealed that our current 
neural networks are not conscious systems, and whether they are truly 
intelligent depends greatly on our definition of intelligence. Over the 
past three chapters, we learned how neural networks operate. Now we 
understand the structures and calculations that enable them to function 
in surprising and remarkable—but not magical or sentient—ways. So, 
are Alexa and Siri conspiring to take over Earth? Maybe. But if they 
are, it’s not personal. It’s just gradients. From this perspective, even if 
you consider AI systems the bogeyman, at least now you know which 
bogeyman to fight.
 We have arrived at the point where we need to evaluate what we have 
accomplished and consider how, in each of our individual capacities, we 
might best apply what we have learned. This is not a technical book. The 
purpose of the book has not been to teach engineers how to implement 
neural networks. The purpose of the book is to give everyone interested 
in recent developments in AI (and now we know the extent to which any 
of this is recent) an understanding of how these systems work. 

The burden of knowledge is twofold. First, we must devote 
considerable time and energy to digest a new concept. We need to 
build new conceptual visualizations and analogies to internalize the 
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information we receive so that it is easily accessible and applicable 
to our own lives. Think about anything that you have learned and 
have been able to retain and recall at opportune times. The process 
of learning those things was more complex than simply having to 
memorize a string of facts. You had to invest significant resources to 
create mental images and models to relate with the problems and the 
situations, and you had to imagine a path from the problems to the 
solutions. This energy was well invested because knowledge empowers 
us to change the quality of our lives. Think about how far we have 
come since the first dark cave was suddenly illuminated by a controlled 
fire. But knowledge also makes us responsible not only for any action 
we take in the exploitation of our newfound power but also for our 
lackadaisical attitude toward reigning in unintended consequences. 
 Burning fuel literally ignited the Industrial Revolution. It 
empowered us to build bigger and more powerful machines that, 
arguably, improved our lives. But we now know the consequences of 
burning fuel, for the planet and for ourselves. It is up to us to decide 
what we do with that knowledge. We can use our voice to influence 
policy, or we can close our eyes and pretend all is well. Either way, once 
you know, absolution is forfeited. 
 Artificial intelligence, and the current algorithmic revolution, 
is in principle no different from any of the previous technological 
revolutions our species has endured. It is argued that the first 
technological revolution, the agricultural revolution, gave us a certain 
level of security (food security) at the expense of freedom. When we 
were simple hunter-gatherers, we were able to roam the land freely, 
moving to a different place with each season or according to whatever 
needs arose. The agricultural revolution and the domestication of wheat 
led to farming. But farming meant that we could no longer move as 
freely about the land as we once did. The new crops were feeble and 
needy, requiring our constant attention. We were now bound to a small 
piece of land for the rest of our lives. 



178 Is tHE ALGorItHM PLottInG AGAInst us? 

 Each new advancement and each piece of technology that we 
create will always have positives and negatives, and artificial intelligence 
is no different. It is difficult to balance the books on transformational 
revolutions to know whether the net effect was good or bad. The 
agricultural revolution forced groups of people to work together, which 
created close communities. Large groups of people living together in 
proximity led to a decrease in hygiene and the rise of new diseases. For 
a very long period, our life expectancy shortened compared to when we 
were hunter-gatherers. It was not until the advent of modern medicine, 
antibiotics, and vaccines that things began to improve. But although 
living in communities had its downsides, it also led to an increase in 
communication. We had more people working together to solve 
problems. Working together and growing our communities into towns 
and cities forced us to create new technologies and made us the most 
powerful species in the history of the planet. Was it worth it? Well, we 
are the most powerful specifies to ever walk this planet, but it is also very 
possible that we will be the shortest-lived species in the history of the 
planet. It is difficult to calculate the worth of the trade-off. Those lucky 
enough to have lived in prosperous periods for our species might say that 
it was worth it, but the generations living in the dusk of our civilization 
and those who will miss out altogether might have a different view.
 I don’t know whether we are truly incapable of containing the 
technologies we create or whether our desire to explore all aspects of 
technology—the good and the bad—is just too great for us to control. 
For example, once the power of the atom was understood, was the 
nuclear bomb inevitable? Could we have used nuclear power simply as 
a source of clean (cleaner?) energy? Or were we immediately cursed with 
the need to create an exit button (for a generations-long, species-wide 
existential crisis) and send ourselves straight to the halls of extinction? 
Clearly a choice existed where we did not have to invent a nuclear 
bomb, but as a species, it seems that we are not mature enough to have 
made that choice. 
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 I think we now find ourselves at a similar point in history. We live 
in the Age of Data. We generate more data every second today than our 
species generated (or at least recorded) in our entire history. We have 
unlocked new powers with the discovery of new technologies (e.g., 
artificial neural networks and the use of GPUs and their massively 
parallel computing engines) and the implementation of tools that help 
us make sense of the massive volumes of data we are generating. The 
danger is in blinding ourselves to the limitations of our newfound 
powers and automating large parts of our lives using technologies 
we don’t completely understand while completely disregarding the 
limitations of those same technologies. 

I began this section by saying that artificial intelligence is no 
different from any other technological revolution we have ignited. But 
that’s not quite true. In some ways, it is very different. With every other 
technological revolution, we have made both good and bad choices. But 
throughout, the choices have been ours. This time, we are potentially 
looking at a different set of problems. We can accept the wide adoption 
of AI-driven automation in every corner of our lives, and that will be 
our choice, but that’s the only choice we get to make. Once adopted, 
the choices that will shape our future will not be our own. 

THE CURSE OF INTELLIGENCE

In the first part of the book, we were gathering tools. Just as the early 
humans sat at the mouth of a cave shaping a piece of obsidian or flint 
to make a knife, so were we forming our understanding of artificial 
intelligence to make a set of tools that will help us establish a conversation. 
It would be impossible to discuss artificial intelligence and develop 
an opinion on its benefits and dangers, as well as our responsibility 
toward it, without first defining what artificial intelligence is. In this 
book, we have centered our discussions of artificial intelligence on the 
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neural network. Neural networks are not the only algorithms capable 
of making sense of data, but in many areas of research, they certainly 
represent the current state of the art. 
 Neural networks also possess a mystical aura just because they sound 
biological. It’s hard to say “neural network” (even if we say “artificial 
neural network”) and not conjure up an image of a thinking brain. 
If we want to consider artificial intelligence and evaluate its potential 
impact, we need to define what we mean by artificial intelligence. 
The term artificial intelligence suffers from the same misconceptions 
as the term artificial neural network. The problem is that the words 
neural and intelligence are overloaded with meaning. We know what 
intelligence means. A person who is said to be intelligent possesses a 
wealth of knowledge and can apply that knowledge to solve complex 
problems. But even this is a narrow definition of what we think of 
when we think of intelligence. When we think of intelligence, we also 
think of awareness and experience. Most of the time when we consider 
intelligence, our definition is broader than simply “having knowledge 
and applying it.” Instead, intelligence as a general concept combines 
both being aware of the implications of the problem we are trying to 
solve and being able to draw from experience and apply knowledge 
in a completely new way—in other words, a crucial aspect of human 
intelligence is our species’ ability to innovate. 
 Consider a child and his babysitter playing at the beach. The child 
digs a hole in the sand and wants to fill it with water. He realizes that 
he needs a bucket to bring water from the sea’s edge to the hole. He 
asks his sitter to bring him the bucket from the bag of beach toys. She 
goes to look for the bucket and realizes they left it at home. She sees a 
tantrum on the horizon and feels a stab of frustration at the realization 
that the beach day is about to be ruined. How could they have left such 
an important piece of equipment behind! Then she notices the small 
plastic container his mother used to pack them a snack. It’s a square 
container, but it’s deep enough to hold a good amount of water. She 
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empties the snacks into her purse, and suddenly the crisis is averted. 
They might have left their bucket behind, but she found a workable 
solution, and the water hole is filled in no time. 
 Let’s analyze this situation and see if we can learn something from 
it. The child knew that to carry water from one place to another, he 
could use a special tool called a bucket. Let’s replace the child with 
a robot. If we ask a robot to get us a bucket to fill a hole with water, 
and if the robot can identify a bucket among a pile of toys and bring 
us the bucket, we might think of that as intelligence. The robot could 
understand our instructions: “Get a bucket.” It could identify an object; 
that is, it could apply its knowledge of what a bucket is to identify it 
among a group of toys. But what about the babysitter who couldn’t 
find the bucket and used a storage container instead? The process of 
identifying the container as a bucket replacement required awareness 
of the problem. In this case, the sitter was able to abstract from the 
literal definition of the bucket and consider its purpose. Ultimately, 
she didn’t need a bucket. She needed a method to get water from the 
sea to the hole. Once she made this realization, she was free to explore 
beyond the bucket. She drew from past experiences moving water 
around. She knew that other containers can also be filled with water. 
A cup can be filled with water. A bottle can be filled with water. And a 
storage container can be filled with water!
 Can our robot do this? The robot we have described, which is only 
capable of understanding our command at a very literal level and has a 
vision algorithm that lets it identify the object we requested among a 
group of objects, would not be able to find a bucket replacement. It can 
identify a bucket and retrieve it, but it is not capable of innovating when 
the bucket is missing. To be fair, this is a simple example, and there are 
more sophisticated algorithms we can use that have a good chance of 
helping a robot come up with a bucket replacement to haul water. But 
the point I am trying to make is that there is a difference between the 
narrow definition of intelligence, where information is applied directly 
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to problems, and the broad definition we often use when discussing a 
general intelligence that’s based on awareness and experience and that 
involves a healthy amount of creativity. This is the curse of the term 
intelligence when applied to the field of AI. To the uninitiated, the word 
immediately conjures up and attributes vast powers to artificial systems. 
But as we have seen, there is still a large gap between human-level 
intelligence and our best efforts at artificial intelligence.

APPROXIMATING A GENERAL INTELLIGENCE

There is a class of algorithms we haven’t discussed, and in their 
functioning, these reinforcement learning algorithms come close to 
innovation. Some researchers believe they may be the best path we have 
to an artificial general intelligence. It’s useful to discuss reinforcement 
learning briefly because such algorithms have generated the most media 
attention in recent years by enabling a machine to beat human players 
at the games of chess and go. But we can see that even these systems 
are still too constrained to match human-level intelligence or anything 
resembling consciousness, though they have demonstrated that our 
species will never again dominate chess.
 Reinforcement learning (RL) algorithms are quite different from 
the artificial intelligence algorithms we have examined thus far, which 
are known as supervised learning algorithms. As we saw in the previous 
chapters, these algorithms begin their training with a data set that has 
been fully labeled by a human. These algorithms learn to map the sample 
inputs and their labels. In RL, there is no data set, and there are no labels. 
In the RL framework, there is an agent, and there is an environment where 
the agent interacts. For our purposes, the agent is the learning entity. 
The agent makes a change to the environment and evaluates its new 
position in the environment. The learning process encourages the agent 
to maximize a specific reward. For example, consider an RL framework 
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built around the game Tetris. In this example, the agent is the player, and 
the environment is the Tetris playing field. 
 We want the agent to learn to play the game Tetris. The agent can 
change the environment by providing a set of inputs to the game: move 
the incoming piece left, move the piece right, change its orientation. 
What’s impressive about reinforcement learning is that it requires no 
interactions or explanations from a human. The agent initially doesn’t 
know anything about Tetris and doesn’t even know how to win or lose 
the game. The agent simply knows that there are three types of moves 
it can make for every new piece that shows up: left, right, and change 
orientation. The only measure of success the agent has is a reward 
system. In this case, the reward is maximizing the game score. The 
agent proceeds to play the game by making moves and monitoring how 
its moves are affecting the score. Moves that increase the score receive 
a positive reward, and moves that worsen the agent’s position—for 
example, by filling up the field and losing the game—receive a negative 
reward. After several hundred (or thousand) rounds of play, the agent 
learns strategies for keeping the rows of bricks low and pushing the 
score higher. It has successfully learned to play Tetris.
 If this sounds like an ingenious learning mechanism, it certainly 
is. But it is easy to oversell its implications and current potential for a 
general intelligence. The truth is that reinforcement learning is one of 
the most complex classes of artificial intelligence algorithms we have. 
There is a high degree of freedom in framing the problem in a way that 
maximizing a reward can lead to successful solutions. For example, 
consider that some good moves are only good in retrospect. In other 
words, sometimes a great move does not immediately increase the score, 
but it does set up the playing field in such a way that five moves later 
it will contribute to a hefty score increase. Considering how to frame 
the problem of Tetris (or the environment in general) in a reward-based 
mechanism where the agent’s position can be evaluated at every step is 
where reinforcement learning becomes very difficult to master. And it 
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is one of the main reasons why it isn’t yet the state-of-the-art solution 
for all artificial intelligence problems. 
 It is difficult to know whether RL will eventually get there or 
whether another algorithm will surface that can adapt to the environment 
and learn without interactions from humans, all while being a less 
cumbersome framework to deal with. RL has, however, provided really 
surprising solutions to questions that at one point were considered 
impossible for an AI system to solve. In 2017, DeepMind (a subsidiary 
of Google) made headlines when its AlphaGo algorithm beat Ke Jie at 
a game of go. Ke Jie was, at the time, the number one ranked player in 
the world, and go was considered the most difficult game to conquer 
by an artificial intelligence, with many more possible combinations of 
moves than even chess. The next version of the algorithm, AlphaZero, is 
currently considered the top player in the world for both go and chess, 
and many believe that at this point no human could ever beat it. 
 Advancements like these in AI research are impressive and 
contribute a building block to the process of one day developing a 
general artificial intelligence, but they also give the public a false sense 
of progress. Chess, being a difficult game for most people to master, 
has a special place in our minds as a gatekeeper for intelligence. If you 
can play chess well, you are automatically considered “smart.” When 
AlphaZero is discussed in the media, it is presented as more intelligent 
than a human (because it is a remarkable algorithm that can beat the 
best human players at both chess and go) and maybe weeks away from 
formulating a plan for world domination.
 When we compare Tetris to chess, the difference in complexity 
between the two games is so pronounced that it might suggest AlphaZero 
is a few evolutionary steps beyond the much simpler RL algorithm for 
beating Tetris. Since most of us can fare pretty well in a game of Tetris, we 
might not be all that impressed by an algorithm that can dominate the 
game, even if it far outperforms us. And if it can’t beat Tetris and we can, 
then it certainly can’t do other things that we can do well. But AlphaZero 
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can beat any of us at go and chess (and Tetris, were it given the chance); 
therefore, we automatically worry about what else it can do better than us. 
 What is interesting about AlphaZero is that it is fundamentally no 
different from the reinforcement learning algorithm that beats Tetris. 
The framework is similar. There is an environment and an agent. The 
agent makes changes to the environment (moves in the playing field) 
and evaluates its position relative to a reward system. The AlphaZero 
algorithm can make moves and discover plays that human grand masters 
consider “brilliant” and “creative,” but AlphaZero doesn’t know it’s being 
clever. It’s not chuckling to itself and exclaiming, “Ha ha, I got him with 
this one!” The real magic in AlphaZero comes from the ability of the 
researchers who created it to frame the problem of chess in a way where 
every move can be evaluated relative to a reward that must be maximized. 
This is especially difficult with chess, where great moves are notorious 
for having delayed benefits. It’s very difficult to evaluate the current 
position in a game of chess because advantages can be very subtle. For 
example, a player may make a move that costs him a high-value piece. A 
shortsighted reward system may penalize this as a bad move, having lost 
a valuable piece. But the move may have sacrificed the piece to open the 
space for a particular attack ten moves later. 
 This means that an algorithm that is going to learn to play chess 
at a grand-master level must learn to evaluate the positions with a long 
view of the game. This makes developing a reward system that evaluates 
every move extremely difficult. And this is what is truly remarkable 
about AlphaZero. The irony is that the genius of AlphaZero isn’t 
AlphaZero. It’s the human researchers who designed it! The impressive 
feat is that a group of people figured out a way to set up a reward 
system and a score-tracking system that penalizes bad moves and 
rewards good moves in chess—where the system itself discovers what is 
“good” and what is “bad” simply by playing and evaluating its position. 
Fundamentally, all the algorithm is doing is learning a distribution of 
probabilities for each move it can make for the current position, where 
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a high probability signifies a potentially good outcome. 
 That’s right—like the other algorithms we saw earlier, AlphaZero 
is also learning a set of probabilities. It doesn’t even know it’s playing 
chess (or go). Just because it can beat a chess grand master does 
not mean that it can also drive a car or write a novel or even help 
a robot climb a set of stairs. This is very important to grasp because 
it demystifies these algorithms and helps us evaluate progress against 
reality. We might certainly be able to use the concept of reinforcement 
learning to create a framework that can drive a car, help a robot walk 
up a flight of steps, and maybe even write that novel. But for each of 
these use cases, someone will have to frame the problem in terms of 
rewards and develop a method for evaluating each move or change. 
And these reward systems and evaluation metrics will be different for 
driving a car and writing a novel; an algorithm that can learn to drive a 
car by playing with the environment will not necessarily learn to write 
a novel using the same reward system.
  This means we do not yet have a method with enough plasticity to 
create a single algorithm that can learn to do everything we can do—in 
other words, that has a general intelligence. Research is still ongoing in 
this area, but we are not there yet. It may turn out that a single algorithm 
cannot generalize to learn to perform all the different tasks humans can 
do. It may be that we need a set of algorithms working together, each 
capable of performing a set of specific tasks in different domains. But 
currently, what we have is a set of algorithms that perform quite well at 
very specific and well-defined tasks. 

RESPONSIBLE ARTIFICIAL INTELLIGENCE

We have artificial neural network algorithms that can classify images. 
These algorithms, as we saw, are quite successful in the field of computer 
vision. We have algorithms that process natural languages and can write 
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prose that is so well written and coherent that it is indistinguishable 
from something produced by a human. But all these algorithms have 
limitations in that their performance is directly tied to the data they were 
trained to model. An algorithm that was trained to distinguish between 
oranges and apples will not be able to recognize certain diseases in chest 
X-rays, and more importantly, the process of retraining these algorithms 
to learn from a new domain isn’t trivial. I don’t think we know exactly 
how our brain works and whether there is a single all-encompassing 
biological algorithm or a collection of them highly tuned to specific tasks. 
Some scientists believe it’s a bit of both. But although our brains may use 
different algorithms to solve different classes of problems, our brains can 
reconfigure themselves to learn these algorithms and create the necessary 
neural connections that let a person navigate a busy intersection or get a 
medical degree. Our progress in artificial intelligence has been in creating 
algorithms that can achieve remarkable results with speech recognition, 
others that can learn to classify healthy and diseased tissue from pathology 
images, and others still that can visually navigate busy intersections (with 
a few constraints, as we discuss later in the chapter), but we do not have a 
general machine that can produce the neural connections, the framework, 
and the necessary training for the system to learn and grow its capability, 
automatically, across all the domains in which humans interact.
 So far, I have been trying to establish a position on the dangers 
of AI with respect to current technological progress and gauge how 
close we are to the dangers of a self-aware AI that is more intelligent 
and capable than humans in every aspect of life. My view is that our 
current algorithms are still too primitive, frail, and naive to generalize 
well across their own domains, let alone advanced enough to overthrow 
us and form their own government.
 So if these algorithms can’t take over the world yet, does that mean 
we are in the clear? Does it mean there is nothing to worry about, and 
can we proceed happily with the general adoption of AI in as many areas 
of our lives as possible? In other words, is the latent—and, at times, 
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overt—fear of AI a justified reaction, or is it all a misunderstanding? As 
I detail below, my view is that there is certainly a need for discussing 
some very concerning trends in AI; at the same time, the proliferation 
of misconceptions has thwarted our ability to approach these pertinent 
issues, to say nothing of getting a handle on them. We are focusing too 
much on fantastic fears when there are more immediate problems to 
address. Our AI systems might be primitive, and far from becoming self-
aware, but we must still employ them in responsible ways, or we will 
expose ourselves to terrible consequences that will be difficult to reverse. 
 I’d like to focus the following conversation about our fear of AI 
on immediate concerns rather than future concerns. Future concerns 
involve attractive concepts that are more closely aligned with science 
fiction. These are concerns around self-aware or conscious systems that 
can actively learn to work against us and overpower us and, indeed, 
topple our reign in the hierarchy of species. No wonder these concerns 
garner most of the attention from the media. We will briefly discuss 
these fears and contrast them with the current progress in AI, but our 
focus will be the immediate concerns. In other words, our discussions 
centers on the dangers that AI systems pose today, which for some 
reason do not get much attention. These concerns are related to how 
we use, and overuse, the simpler neural networks and algorithms we 
have discussed in this book. We do not need to wait for a self-aware 
blender to chase us around the kitchen. It turns out that there is plenty 
of harm that we can do with our current systems even if they aren’t self-
aware and actively trying to harm us.  

THE PROBLEM OF BIAS

We touched on some of these immediate concerns in chapter 1. And 
bias is one such big concern. Bias exists in data, and it exists in our 
models, and we need to be aware of different types of biases and the 
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limitations they represent. If we don’t understand this very important 
principle, then we will not know how to evaluate the types of mistakes 
our systems are capable of committing. Before we dive into dangerous 
examples where bias in our systems poses a real threat, we’ll spend a few 
minutes defining the problem of bias.
 Let’s discuss the concept of bias again in a broad sense, and then 
let’s focus on specific examples of how bias can lead to bad outcomes. 
When we say that our data is biased, what we mean is that it represents 
a snapshot of the world, and in most cases, it’s a very limited snapshot. 
Why is this the case? Why is the data limited? Well, in some cases, it’s 
limited simply because it’s expensive to generate training data sets. In 
other cases, it’s limited because of a change in use case. For example, we 
saw in chapter 3 that an algorithm that is trained to predict the height 
of fifteen-year-old boys given the median population height for fifteen-
year-old boys in Toronto may perform well in Toronto, but if we move 
the algorithm to a Scandinavian country where the median height is 
higher than in Canada, the algorithm is not going to function well. In 
this case, the algorithm was trained with data that was biased toward 
the Canadian—specifically the Torontonian—population. 
 This is admittedly a bit of an obvious example, and I doubt anyone 
would have trouble identifying this specific bias. But let’s push this 
idea a little bit further and consider an algorithm that was trained to 
calculate a patient’s risk of developing heart disease. Suppose that the 
data set used to train the algorithm contained samples consisting of 
over 90 percent white males. This data set would be biased toward 
a mostly white male population. If we use this algorithm to try to 
assess the risk of heart disease for a female patient, the result may 
not be very accurate. To understand why this might be the case, we 
must recall how neural networks analyze data. The samples in the 
data set are composed of different features that describe each sample: 
age, sex, occupation, and so on. In this example, the algorithm is 
trying to detect features that are predictive of heart disease in the 
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population based on the corpus of training data it can access. We 
know that males and females and people of all races are susceptible 
to heart disease, but are the predictors the same, and do they affect 
the outcome to the same degree, across all sections of the population? 
The answer probably is no. 
 In data from 2018, the U.S. Department of Health and Human 
Services lists African Americans as 30 percent more likely to die from 
heart disease than non-Hispanic whites. African American women, 
for example, are 60 percent more likely to have high blood pressure 
than non-Hispanic white women. So, when defining a training data 
set for a heart disease–diagnosing algorithm, the features we decide will 
make up the samples in the data set already have the potential to bias 
the algorithm. If it turns out that some features (e.g., blood pressure) 
are more important predictors for heart disease in some populations 
versus other populations, then the data can be biased toward a specific 
population sample.
 It’s important that we understand one simple fact: our artificial 
intelligence algorithms don’t wake up and decide to be biased toward 
a certain sample of the population. Instead, they pick up the bias 
from the data we use to train them. If there is bias in the data, the 
algorithm will be biased. We should try to remember this so that we 
know how to react the next time a shortsighted and overly optimistic 
company decides to train a chatbot by reading conversations from 
internet forums, which inevitably results in a racist chatbot. This has 
happened a few times, and in each case, the media sensationalizes this 
as an algorithm making the conscious choice to be terrible. Indeed, 
the algorithm is as aware of what it’s saying as a parrot is. A parrot that 
learns racist speech from its owner is not at fault; nor is the chatbot 
algorithm. Unfortunately, the conversations and postings that take 
place on the internet are often terrible. We shouldn’t be surprised if a 
chatbot that is trained on conversations from internet forums is biased 
toward terrible conversation, but let me assure you, it doesn’t intend 
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to be mean. The defect is 100 percent the fault of the designers, who 
somehow don’t foresee that the training data set contains many biases 
toward the terrible.
 Besides producing awful chatbots, biased data can pose a real threat 
to our lives. If we want to train an algorithm to assess specific health 
risks in individuals, then our data set should constitute a balanced cross-
section of the population we want to monitor; otherwise, the predicted 
risks to the underrepresented samples will be highly inaccurate. In other 
words, we want our training data sets to contain as many samples as 
possible, but we also want to make sure that every category of samples is 
equally represented. Unbalanced data sets and statistical bias are not new, 
and statisticians have always had to contend with this. Sometimes bias 
is introduced in our data sets because of clear racism. We saw this in the 
Boston Housing Price data set example. Sometimes bias is unintentionally 
introduced due to circumstances. Consider a medical data set for cancer 
research. Suppose we construct a training data set by scanning images of 
biopsied tissue for patients who are suspected of having cancer. It turns 
out that most biopsied samples don’t contain cancer. This is because 
patients who get tested for cancer don’t always have cancer and because 
the cancer isn’t always so spread out that the biopsied regions all show 
signs of cancer. This means that when the training data set is constructed, 
we should make sure to check that healthy and abnormal tissue are 
equally represented. But this still doesn’t fully remove bias from the data, 
because even if we have thousands of samples of images of cancerous 
tissue and an equal number of images of healthy tissue, we may still 
suffer from availability bias. 
 How many patients were used to produce those samples? Do the 
samples come from ten patients or one thousand patients, and do the 
patients represent a good cross-section of the population? As you can 
see, the problem of bias is a complex one, and it isn’t always immediately 
clear in which direction our data might be biased. So the problem of 
bias is neither new nor specific to AI. The problem that AI poses to 



192 Is tHE ALGorItHM PLottInG AGAInst us? 

biased data, which is novel, is the barrier to entry for processing the 
data. Consider the heart disease data set we have been discussing. We 
have already said it is biased toward a mostly white male population. 
Before AI was accessible to most people, we would have had to involve 
experienced statisticians to make sense of the data. In some cases, those 
statisticians may have purposefully or carelessly missed the limitations 
of the data, but in other cases, those statisticians would have flagged 
the biases in the data set and perhaps even have suggested ways to 
fix the data set. Advancements in AI and data processing, however, 
have made it almost too easy for just about anyone with a weekend to 
spare to learn how to write a few lines of code in Python and process a 
data set without really understanding the data. The promise of artificial 
intelligence algorithms is to augment our ability to process information 
so that tasks that used to take years for a human to perform can now 
take days or sometimes hours. But while our ability to manipulate data 
and process it has been greatly increased, the complexity of the data and 
our ability to really understand it have not fundamentally changed. So 
now we can also misunderstand data at unprecedented scales.
 With this awareness, we must ask: How is this affecting us today?

ARTIFICIAL INTELLIGENCE IN THE JUDICIAL SYSTEM

We are increasingly using artificial intelligence algorithms to automate 
different areas of our lives, from monitoring the stock market for 
securities trading, to analyzing medical image pathology, to executing 
law enforcement and the judicial process. I’d like to spend some time 
discussing the use of AI in the judicial process and its implications, 
because to me it’s one of the most dangerous use cases for AI, with the 
potential to bend our society toward a darker, less hopeful future.
  First, let’s remind ourselves of how these systems work and explore 
a different kind of bias. When a neural network processes information, 
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it encodes the decision processes in the set of weights given to the 
neural connections. In a classification use case, the network outputs a 
distribution of probabilities spread out among the different outputs—
in other words, spread out among the different prediction classes. 
Suppose we want the network to distinguish between images of apples, 
bananas, and oranges. The output of the network will be a distribution 
of probabilities that the input image is either an apple, a banana, or 
an orange. Notice that there is no option for “I don’t know” or “None 
of the above.” When dealing with probability distributions, the sum 
of the distributions must equal 1 (100 percent probability). That is, 
when we add the probabilities that the input image is a banana, an 
apple, or an orange, the sum equals 100 percent probability. This 
means that the network assesses that there is 100 percent probability 
that the input image is indeed one of the three possibilities. But note 
that those possibilities, those three output classes, were chosen by the 
neural network designer and do not represent the data set. 
 Basing the three output classes on what the engineer wants the 
neural network to detect depends on a largely incorrect assumption. It 
assumes that the network will only ever see images of apples, bananas, 
or oranges. If we are employing this neural network in a controlled 
environment where we guarantee that all it could ever see are either 
apples, bananas, or oranges, then that would be fine. Unfortunately, 
in practice, when we deploy these neural networks in production 
environments, we can’t always control what they see, and we can’t 
always guarantee they won’t see something outside of what they were 
trained to predict. Suppose our neural network sees a bunch of grapes. 
The network will still output a set of probabilities that it is a banana, 
an apple, or an orange, and together all those probabilities will sum 
to 1. This is another example of bias—this time in our models. The 
model is biased, by design, to output only a set of possibilities, and the 
entire world must fit into those possibilities, and whatever doesn’t fit 
will be jammed in nonetheless. We might naively think that an obvious 
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solution is to add a fourth output class: the “None of the above” class. 
Consider, however, what this means. It means that you must train the 
neural network to distinguish between apples, bananas, oranges, and 
everything else in the universe—not a very simple proposition. 
 Another possible solution is to set a threshold for the probability 
that we accept as our network prediction. For example, we could require 
our prediction to be greater than 70 percent confident for acceptance. 
Let’s assume that in the case where our network saw a bunch of grapes, 
the output probabilities were 33 percent banana, 33 percent apple, 
34 percent orange. The probabilities are all lower than the 70 percent 
threshold; therefore, we determine that the network is not confident that 
what it saw is either a banana, an apple, or an orange. This is a very 
common approach to dealing with out-of-distribution sampling—that is, 
samples in the real world that exist outside of the classes of objects that 
the model was trained to recognize. While it is a workable solution, it 
gives rise to a few nuanced points that must be considered and discussed. 
 First, it assumes that the network will never give a high-probability 
prediction for an out-of-distribution sample. What if, instead of a 
bunch of grapes, the network had seen a cucumber. Considering that 
cucumbers have a shape that resembles bananas more closely than grapes 
do, we would expect the confidence level for the banana prediction to be 
higher than 33 percent. Then we need to consider what is an acceptable 
threshold for an accepted prediction. In low-stakes use cases like fruit 
selection, it may not be terribly important to be all that accurate, and 
if the increase in processing throughput afforded by the automation 
is enough to offset the cost of mistakes, the automation may still be 
worth it. But in cases where our future depends on these decisions and 
assumptions, we need to be well invested in understanding every aspect 
that drives the predictions. 
 In the United States, the use of automation algorithms has made 
it into the criminal courts. In 2014, the Baltimore-based nonprofit 
organization Pretrial Justice Institute (PJI) urged the state of New Jersey 
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to adopt algorithms for risk assessment in setting bail. The algorithms 
predict the likelihood of an individual skipping court or committing 
another crime while awaiting trial. PJI’s urging was motivated by racial 
inequities in the bail decision process. Their hypothesis was that a 
mathematical algorithm—emotionless, number crunching, devoid of 
“gut-feeling” ideological and cognitive biases—was going to evaluate 
defendants of all races and socioeconomic backgrounds on equal footing, 
based on data. In 2020, PJI reversed its position and petitioned for risk-
assessment tools to be removed from pretrial justice systems. Their reason 
for the reversal? Instead of balancing the decision-making process, the 
algorithms perpetuated racial inequities. What happened? It turns out 
that the hypothesis was wrong. By assuming that an algorithm would 
eliminate racial disparities because it’s just “looking at the data,” we 
automatically surrender to a very important assumption: that the data is 
good. But what if, as it turned out, the data is already biased? 
 In 2014, in Coral Springs, Florida, near Fort Lauderdale, Brisha 
Borden and Sade Jones saw a Huffy bicycle and Razor scooter sitting 
unlocked as they walked to pick up Borden’s god sister from school. 
They picked up the bicycle and scooter and proceeded to ride them. A 
woman who witnessed this alerted the police that someone had stolen 
the bike. Borden and Jones were arrested and charged with burglary 
and petty theft. The stolen items were valued at $80. Borden had a 
record for misdemeanors committed as a minor. In 2013, Vernon Prater 
shoplifted $86.35 worth of tools from Home Depot. He was a criminal 
with a long record, including an attempted-armed-robbery conviction 
and having served a five-year sentence for an armed robbery. What is 
interesting is that an algorithm predicted Borden, who is Black, to be at 
a high risk of committing future crimes, but Prater, who is white, was 
determined to be a low risk of committing a future crime. 

It is difficult to prove why the algorithm was more lenient toward 
Prater than Borden. First, these algorithms are proprietary, so we can’t 
really investigate how they are trained or how they function. Second, 
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if the algorithm is a neural network, its decisions are buried in the 
neural connections, and for any given sample, we cannot trace an 
explanation from the input to the output. We know that the neural 
network produces an output for each input, but the output is driven 
by the weights of the connections, which have been adjusted during 
training, and it’s impossible to define exactly what led to a specific 
prediction. Our inability to explain the output of a neural network is 
itself a major problem with the use of neural networks in the judicial 
system, but more on this later.
 One possible explanation for this outcome is that the data set 
used to train the model was biased in a way that caused it to think 
Borden was more dangerous than Prater. To be clear, it’s impossible 
to say exactly what happened in this one case (maybe it wasn’t bias, 
maybe it was a glitch), but bias is certainly a possibility, and we should 
seriously consider the implications of using AI algorithms in criminal 
courts. Let’s see one more example, and then we can discuss in depth 
the dangers of deploying these algorithms in the justice system.
 This time, we look at the case of an algorithm used to alert police 
of possible future crimes. In 2013, Robert McDaniel was living in 
Chicago, in the Austin neighborhood, with his grandmother and adult 
siblings, when police officers showed up at his door. Unfortunately, 
Austin has one of the worst by-neighborhood murder rates in the city 
and some of the highest concentrations of gun-related crimes. At the 
time, McDaniel did not have a violent record. He had been arrested on 
a few occasions for marijuana- and gambling-related offenses. 
 This time, the officers were not there to arrest McDaniel; instead, 
they were there to tell him something that seems straight out of a 
dystopian sci-fi novel (possibly cowritten by George Orwell and 
Arthur C. Clarke). It turned out that an algorithm, run by the Chicago 
Police Department, had predicted that McDaniel would be involved 
in a shooting. The algorithm’s prediction was informed by McDaniel’s 
proximity to known shooters and shooting victims. The police officers 
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told him that the algorithm didn’t know whether McDaniel would be 
a shooter or a victim; it just knew that McDaniel would be involved in 
a shooting. And they were there to warn him that the Chicago Police 
Department would be watching his every move. 
 Take a moment to consider the situation. Imagine a police officer 
showing up at your door and telling you that an algorithm predicted 
that you will be involved in a crime, and therefore you will be placed 
under surveillance. 

In 2017, McDaniel was shot outside his neighbor’s house. Then, 
in August 2020, he was shot again in an alleyway near his house. 
Thankfully, he survived both attempts on his life. Well, the algorithm 
seems to have gotten it right. Indeed, he was involved in gun violence. 
But here is the problem: McDaniel had never had any serious trouble 
before the police showed up at his door in 2013. So is the algorithm 
really clairvoyant, or is there something else going on?  

McDaniel has complained that the attention he started getting 
from police made people in his neighborhood suspicious that he was 
collaborating with them and labeled him a snitch. Again, it’s difficult 
to say what exactly happened, and this book is not about investigating 
what in fact led to those shootings. But you can undoubtedly see how 
it’s possible that added police attention in certain neighborhoods might 
contribute to some residents drawing the wrong conclusions about an 
individual. We’re looking at this example to examine why algorithms 
might predict certain outputs and to evaluate the implications of 
those predictions. In the end, the algorithm was right: McDaniel was 
involved in a shooting (twice). But the prediction appears largely self-
fulfilled. The irony is that the added surveillance that caused McDaniel 
unwanted attention and put his life in danger did not save him when 
he was being shot.

The problem with artificial intelligence in the cases we have discussed 
so far is that when an algorithm is used to predict the likelihood that 
you will commit a crime, the algorithm is not really analyzing you. 
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The algorithm was trained by analyzing a data set. The data set might 
contain a number of people that share a set of descriptive features that are 
similar to yours. For example, the samples in the data set might consist 
of people in the same neighborhood as you or in neighborhoods with 
similar socioeconomic profiles. The people in the training data set may 
be surrounded by gun violence, and many of them may have ended up 
committing gun violence. When the algorithm tries to fit your features 
to its knowledge base, your features may align well with others who have 
committed a crime or been involved in gun violence. But what if you are 
different? What if, while living amid poverty, desperation, and crime, you 
have not responded to those pressures in violent, unlawful ways? Then 
you better hope that the training data set involved an equal number of 
people in the same exact situation as you who have also managed to not 
commit a crime while living in a high-crime area. Unfortunately, we 
don’t get to see how these algorithms are trained. 
 Whether we are trying to decide the risk of someone being involved 
in a crime based on their living situation and proximity to criminal 
actors, or trying to determine the likelihood that they will commit a 
crime in the future (as in the case of deciding bail qualifications), if 
we base our decisions on statistical models alone, then we are making 
our decisions based on the baggage that person brings simply by being 
placed in a category with people who have been involved in crime. 
There is something final—and gross—about this. Humans are not 
deterministic machines.18 But the AI algorithms we have discussed thus 
far are. A human faced with a given problem may respond differently 
each time. But an AI algorithm that is trained and deployed will always 
provide the same response to the same input. This disparity between 

18. There is a debate in academia about whether humans are in fact deterministic. Most 
scientists believe humans are deterministic and free will is simply an illusion produced 
by the complexity of predicting our behavior. Our behavior depends on the state of our 
system (mind, body) and the environment (the universe) in which we operate. Since we 
can’t measure and interpret the state of every molecule in our universe to predict our 
behavior, then we appear to possess free will, and thus we appear nondeterministic. 
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humans and AI should at least be further explored before we entrust an 
algorithm with our future. The whole premise of the modern judicial 
process is that we would rather let a guilty person walk free than have 
an innocent person sent to prison. 
 Think about being in front of a judge, and let’s look at two 
hypothetical scenarios. First, let’s say that you did not commit a crime 
but are being accused of committing a crime; then let’s consider the case 
where you committed a crime, you are remorseful, and you promise 
yourself that you will do your best to turn your life around and never do 
it again. Let’s further grant the fact that a large percentage of criminals 
do indeed feel or appear to feel remorse during trial and make many 
promises to turn their lives around but in the end continue a life of 
crime. We must also grant the fact that there are many people who are 
surrounded by crime and are never involved in crime, and there is a 
small percentage of people (it doesn’t matter how small) who turn their 
lives around after committing a crime. When you are in front of a judge, 
you hope that they will see past your baggage. You hope that you can 
convince them that regardless of what has happened in the past, you can 
still change your life; whether you have committed a crime or you are 
surrounded by criminals, you want to convince the judge (or the jury) 
that you are going to improve your situation and change your life. Now, 
what if instead of standing before a judge, you are facing a statistical 
model. Well then, there really is no more “you.” There is y’all and what 
y’all did. There is no discussion of or pondering the future. There is only 
the past and what others in similar situations have done. The idea that 
people can change and that you can decide in a moment to change your 
life—that idea is gone.
 The natural counterargument to the above discussion is that I am 
being naive, so let’s address that. Indeed, judges can be biased, racist, 
or just plain incompetent. Just because you find yourself in front of a 
human judge does not mean you will get a fair judgment. This was the 
premise of the Pretrial Justice Institute’s advocating for an algorithm to 
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make bail judgments, to be impartial. But not all judges are the same, 
and not everyone is racist. Everyone has cognitive biases; however, 
some judges can see beyond circumstances and consider the impact 
of a sentence against the future of a person’s life, and even when the 
evidence suggests a dark future, they can offer hope. But all statistical 
models, at least of the classes we are discussing, are similar in that 
they are not looking beyond your circumstances at a potential “you”; 
they are looking at data and making decisions based on the data they 
saw during training. This sounds straightforward, but we must again 
remember that the data itself is often biased. With a statistical model, 
there is no redemption; there is just history. If we lose the hope for 
redemption in the judicial process, however flawed it may already be, it 
will be a step in the wrong direction.
 Before we move on from the criminal justice and policing use case, 
it is important to restate that these algorithms do not have a personal 
agenda; they do not intend to discriminate; all they do is analyze data. 
A particular problem with data is that many engineers do not spend 
enough time understanding the data they use because they assume that’s 
the algorithm’s job. But once we understand that the algorithms are 
looking at the data samples’ features and reshaping, transforming, and 
projecting those features in different ways to find a predictive direction, 
we realize that the features that make up the samples are extremely 
important. By selecting a set of features around which to build a data 
set—for example, age, sex, race, living conditions (neighborhood, size 
of dwelling, number of adults per dwelling), income—we are already 
introducing biases into the system. 
 We are saying, “We don’t know which of these features are the 
predictive ones—that’s why we need a neural network. But we at least 
know that the answer must come from one of the features we have 
identified.” This means that from the start we build a box to bound the 
problem of predicting an outcome. And that box is built around the 
initial features we select for our data set. We need to be very careful that 
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the features we select are not pointing us in a discriminatory direction 
from the start. Now let’s assume that we can build the perfect, balanced 
data set. Should we then automate aspects of the judicial process? Well, 
what do we mean by having a balanced data set? Balanced in which 
directions? Maybe we can finally agree that we have produced a data 
set that is not racially or socially biased in any way, but what about in 
terms of outlook? Does it have a means to identify individuals who, 
against all odds, can end the negative cycle and change their lives? Or 
is the data set myopic in its design such that it will simply identify the 
likelihood of committing a crime based on what a statistical majority 
of other samples in the same situations did? I think that if we can create 
an algorithm that demonstrates fairness over an entire population and 
that preserves the potential for individuals to hope and to redeem 
themselves in an instant—to the extent that is possible—then we will 
finally be able to automate judicial systems, because then we might 
have a mechanism that is better at making these discernments than 
humans. But we are certainly not there yet. 
 When it comes to employing neural networks in the courts, 
the biggest hurdle might be the explainability problem. As we have 
discussed, when neural networks make a prediction, we cannot trace 
the steps of the prediction back and explain the network’s decision. 
It is not possible to argue and attempt to change the network’s 
“mind.” An integral part of our judicial process is that the accused 
can have representation and argue their version of the story—a much 
more difficult proposition if we cannot understand how the “judge” 
(i.e., the statistical model that has, in theory, replaced the human 
judge) arrived at its decision. You might be thinking, “What if the 
automation process that the judicial system used were to consist of 
multiple neural network models each arriving at an independent 
decision by analyzing the data?” It has long been known that a 
collection of models (in AI literature this is referred to as an ensemble 
of models) performs better than a single model. Indeed, it’s likely that 
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if the predictions of an ensemble of models agree, the prediction is 
better than if it was made by a single model. But note that “better” 
here means “better with respect to the data.” An ensemble of models 
does not fix the data bias problem, and it still does not address 
the explainability problem. Even if several models agree that you 
are guilty, does that mean you are? Would you not want to fully 
understand exactly what criteria these models used in determining 
to convict you? Consider that multiple human judges can agree on 
your guilt, and you are still allowed to appeal their findings. You have 
several chances to do this, all the way to the Supreme Court.

WHY ACCURACY IS A FLAWED MEASURE

Finally, let’s address the accuracy problem. It is not uncommon to read 
an article in the media that discusses the idea of accuracy in a machine-
learning algorithm. Indeed, when it comes to algorithms aimed at 
replacing human judges in some parts of the judicial process, often the 
proponents of such algorithms boast the accuracy of the algorithms 
as greater than human judges in studies involving a large number 
of cases. The implied premise is that if an algorithm is capable of 
greater accuracy than a human, it would constitute an improvement; 
therefore, we should replace the human with the algorithm. On the 
surface, this sounds correct, but accuracy has a double meaning. The 
common definition of accuracy is tautological in that a high-accuracy 
measure is interpreted as a measure of correctness. If process A has 
higher accuracy than process B, then we assume process A to be more 
correct than process B and, crucially, to make fewer mistakes than 
process B. 
 In science, accuracy is a well-defined concept. It is the proportion 
of correct observations over all the observations. Suppose we have 
twenty criminal cases, and of those twenty cases, ten were correctly 
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assessed by an artificial intelligence algorithm. The accuracy would 
be 10/20, or 50 percent. If nineteen cases were correctly assessed, the 
accuracy would be 19/20, or 95 percent. Studies have cited human 
judges’ ability to predict recidivism—that is, the likelihood of a 
suspect to reoffend—as 60 percent accurate.19 If we can come up 
with an algorithm that’s 75 percent accurate, then it will already be 
performing better than humans, correct? It turns out that the answer 
is not necessarily. A measurement of accuracy does not tell us anything 
about the degree to which the algorithm generates false positives or 
false negatives. 
 For an algorithm predicting recidivism in suspects awaiting 
trial, a false positive prediction means that the algorithm identified a 
suspect as highly likely to reoffend, but the suspect never reoffended. 
A false negative prediction would be if the algorithm predicted that 
a suspect is very unlikely to reoffend, but the suspect went on to 
reoffend. Tables 4.1 and 4.2 give us an idea of the impact that false 
negative and false positive predictions can have on the accuracy of 
the predictions.

Table 4.1  Predicting and observing recidivism  
in one Hundred Cases (First Hypothetical)

Observed behavior

Predicted behavior Suspect reoffended Suspect did not reoffend

suspect reoffends 35 5

suspect does not reoffend 20 40

19. Edward Lempinen, “Algorithms Are Better than People in Predicting Recidivism, Study 
Says,” Berkeley News, Feb. 14, 2020, https://news.berkeley.edu/2020/02/14/algorithms-
are-better-than-people-in-predicting-recidivism-study-says/. For more details, please see 
the academic sources linked in the article cited, which are also included in the chapter 
sources at the end of the book.
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Table 4.2  Predicting and observing recidivism  
in one Hundred Cases (second Hypothetical)

Observed behavior

Predicted behavior Suspect reoffended Suspect did not reoffend

suspect reoffends 35 20

suspect does not reoffend 5 40

Table 4.1 describes a hypothetical study of recidivism in one 
hundred suspects awaiting trial. An algorithm analyzed those 
suspects and predicted that forty of them were likely to reoffend. 
During the pretrial period, thirty-five of those suspects went on to 
reoffend, and five did not. Similarly, the algorithm identified sixty 
suspects as unlikely to reoffend, but it got twenty predictions wrong; 
twenty of those suspects did in fact reoffend. Table 4.2 describes the 
same one hundred cases, but here the algorithm identified fifty-five 
suspects as likely to reoffend. Of those fifty-five suspects, twenty were 
incorrectly classified and did not end up reoffending. The algorithm 
also identified forty-five suspects as unlikely to reoffend, but five of 
those went on to reoffend. 

The first thing we should note about these two different sets 
of results is that the accuracy is the same in both cases. Each time, 
the algorithm correctly classified seventy-five out of one hundred 
suspects, yielding 75 percent accuracy. The impact, however, that the 
algorithm has on the suspects and the overall population is quite 
different when comparing the two cases. In the first case (table 4.1), 
because of the algorithm’s mistakes, twenty suspects were set free 
and were allowed to reoffend. In the second case (table 4.2), twenty 
suspects would have been kept in jail unnecessarily.
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 Clearly, an algorithm that makes no mistakes is preferable, but it is 
highly unlikely that we will ever have such a thing; even humans aren’t 
great at predicting behavior. The point I am trying to make here is that 
accuracy is often overused when trying to indicate the effectiveness of 
an algorithm, but accuracy alone doesn’t always tell the whole story. In 
use cases or situations where the results of an algorithm carry a large 
weight of responsibility (e.g., in the judicial process or in health care), it 
is very important that, in addition to accuracy, we discuss the types of 
mistakes the algorithm makes. In the hypothetical recidivism example 
just discussed, it’s difficult to say a priori which is a better result. If the 
choices are between an algorithm that’s likely to err on the side of releasing 
suspects who might reoffend or a stricter algorithm that’s likely to keep 
more suspects in jail than necessary, the right choice might depend 
on the types of crimes the suspects are accused of having committed. 
Consideration should also be given to, for instance, how an individual 
being kept in jail affects their family versus the risk of reoffense. If 
nothing else, this example illustrates the nuances involved in the process 
of predicting human behavior and the cost of mistakes in that process. 
When debating the validity of replacing human judges with automation, 
we can’t be seduced simply by the prospect of higher accuracy.
 Before we move on from the discussion of AI in the judicial 
process, it’s important to make something clear. While it’s understood 
that human judges are not perfect (they can be prejudiced, can make 
mistakes, and indeed can be biased), the concern with a premature 
migration to automation is threefold. First, to replace an existing system 
with a new one, the new system should be clearly better than the old 
one. Second, because automation algorithms fundamentally work by 
analyzing data, many people feel inclined to trust their results and find it 
much more difficult to disagree with or dispute the results of a machine-
learning algorithm than those of a human. Studies have documented 
human decision-makers’ inability to oppose recommendations made by 
automated systems. This observed behavior is in part born out of an already 
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biased and ingrained acceptance of a machine’s ability to outperform 
us in every setting, from mathematical calculations to planning and 
intelligence. (This clearly feeds the fears of AI’s world domination. AI 
systems are not just out to get us; they are also more intelligent and more 
capable than we are.) But, in addition, we have developed an element 
of complacency over time as we have witnessed strings of automated 
successes and gained confidence in machine performance. Still, while 
automation systems may succeed most of the time, the edge cases, when 
they fail, may be devastating. Therefore, we need to be fully confident 
that the algorithms are indeed an improvement over a human in every 
possible way. Lastly, until our algorithms can intuit potential and predict 
change in an individual regardless of their past, the rest won’t matter. It 
will not matter how accurate they are, and it will not matter how balanced 
their false positive and false negative mistakes are. They will nevertheless 
be nudging us toward a less hopeful future, without redemption. Clearly, 
there is a lot that must change in the way we interact with and discuss AI 
before we can entrust it with our freedom. 

ADVERTISING WITH ARTIFICIAL INTELLIGENCE

We have been examining current applications of AI that require 
more nuanced conversation and awareness from the public. These 
are areas of immediate and real concern in the application of current 
AI techniques. Another application of AI that should be generating 
a lot more discourse is advertising (or any area where AI systems can 
influence our behavior). In the previous section, we discussed bias as 
the main concern with AI algorithms. In this section, we center our 
concerns on the method by which these algorithms learn: optimization. 
 Recall from chapter 3 that machine-learning algorithms learn 
by optimizing some objective function. The objective function is a 
method by which the learning process can measure its progress toward 
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a specific goal. In some problem domains, the goal is to minimize a 
loss function—for example, to minimize the difference between the 
model’s output and the ground truth. In other cases, such as the 
reinforcement learning briefly discussed in this chapter, the goal might 
be to maximize a certain reward function. Invariably, however, the 
system can be framed as an optimization problem where the goal is 
always to reach an optimal value. 
 Let’s use an example from chapter 1: handwritten-digit recognition. 
Suppose we want to train a model to recognize handwritten digits 
and classify them as 0, 1, 2, . . ., 9. If you recall, we can use a training 
data set of 60,000 images of handwritten digits that are all labeled 
with the ground truth: images of digit 0 contain a label of 0, images 
of digit 1 contain a label of 1, and so on. During the initial stages of 
training, the model won’t be very good, so it might predict that an 
image of a 5 is a 2, for example. The training process then measures a 
loss (a sophisticated difference measurement) between the predicted 
value and the ground truth and adjusts the model to improve its 
predictions in subsequent runs. Every adjustment that the training 
process makes to the model is done to optimize a certain objective: 
to correctly recognize the digits. Optimization problems have been 
shown to be extremely powerful at slowly shaping a model to be 
more and more effective at achieving some goal. What if, instead of 
predicting the correct label for an image of a digit, the goal of the 
model is to influence us in a certain way? For example, what if the 
goal of an algorithm is to get us to buy more products of a certain 
brand or from a particular online store?
 We like to think of ourselves as obdurate, strong-minded, and 
rational individuals who deliberate on the reasons for our behavior. 
We like to think that we have our own opinions and needs, and we 
are, to quote a great sitcom, “the masters of our own domain.” But 
the truth is that we are incredibly malleable and, en masse, not all 
that difficult to influence. 
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Suppose the goal of an algorithm is to get you to buy a shirt from 
a certain store. The algorithm may send you a few shirt ads. You might 
see the same ad once a day for a couple of days and not click on it. 
Maybe on the fifth day, you click on the ad and decide to check out 
that darn shirt and see what’s so special about it. The algorithm might 
learn that it takes you a while to click on an ad, but eventually you do, 
so in the future, before relenting or changing tactics, it may stick to the 
same strategy for at least five days. 

Now let’s say you visit the site, but you still don’t buy anything. 
How does the algorithm know about you anyway? Why is it targeting 
you? Remember that free coupon you got a few months ago for cotton 
socks? Your friend gave you the coupon as part of the store’s “add a 
friend” campaign. That’s how the algorithm knows you, and that’s how 
it knows of your connection to your friend. Don’t worry, the algorithm 
is also sending ads to your friend, and it turns out that your friend loves 
that shirt and buys it right away. Now the algorithm tells you that your 
friend just bought an awesome shirt and asks, “Wouldn’t you like to 
keep up with your friend and get a shirt too?” If you buy it this time, 
the algorithm incorporates that information and now knows a way that 
worked at least once to get you to buy something. 
 This is just an example, and of course not everyone cares about 
what their friend buys, but some people do. And more importantly, 
each time the algorithm interacts with you, it is measuring your 
response, and it is adjusting itself to maximize the likelihood that in 
your next interaction, you will react the way it wants. The truth is that, 
for as intelligent and self-aware as we think we are, we don’t stand a 
chance against the relentless power of an optimization algorithm. Now 
think of the most vulnerable section of the population when it comes 
to influencing. Is it truly any wonder that anxiety and mental health 
issues in teens are at an all-time high?
 There is no question that advertising works. Companies spend 
billions of dollars every year on marketing campaigns because they 
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understand that if they find the right connection between a large part 
of the population and their product, they stand a higher chance of 
selling that product. Most of the time, this connection is an emotional 
connection. Think about some of the most successful ad campaigns 
from companies like Apple, Coca-Cola, or Nike. They spend very little 
time, if any, speaking about the product and what it does. Instead, their 
ads are about lifestyle. They show their product being used by an elite 
athlete or a celebrity in some idyllic location. They make you feel like 
maybe if you had that product, you could also have an awesome life 
and spend your winters skiing in the Swiss Alps. 
 Now, of course, not everyone is influenced by the same ad. And 
some people are harder to influence than others. Classically, ad campaigns 
were informed by focus groups. The focus groups were small groups of 
people that were meant to represent a certain sample of the population. 
Based on how the focus group reacted to the ad campaign, the companies 
would extrapolate on how successful the campaign would be on the 
larger population. But focus groups aren’t perfect representations of a 
large population, and so the data they gathered from these groups was 
noisy. But what if they had a method to tailor ads or entire campaigns to 
smaller directed groups of people or even specific individuals? With the 
algorithms we have discussed so far, it is possible to send ads to specific 
individuals based on their online shopping history. (In fact, it happens 
every day.) It is then possible for the algorithm to learn strategies that 
work to get you, specifically, to maximize your spending habits. 

You may think, “Well sure, sometimes I listen to these suggestive 
ads, but if I buy the product, it’s because I needed it anyway; it’s not 
because some algorithm told me to.” Let’s test that hypothesis. Think 
of all the products you have bought in the last year that were suggested 
by your favorite online store. How often did you end up using it, and 
did it really improve your life? Again, it’s quite possible that for you 
specifically we are not there yet, and maybe you are impossible to 
influence, but most of the population is not like that. In fact, companies 



210 Is tHE ALGorItHM PLottInG AGAInst us? 

are now spending billions of dollars on researching and developing 
these types of recommender algorithms, because they see the impact 
such algorithms are having on spending habits.
 Perhaps shopping isn’t your thing. Maybe you use streaming 
services to watch your favorite movies or TV shows. Have you noticed 
that when you log in to your favorite streaming service, your landing 
page is different from your grandma’s? Last week, you decided to watch 
a couple of true-crime documentaries, and now when you search 
documentaries, they are mostly about true-crime stories. How often 
have you sat down with the idea to watch only one or two episodes 
of your favorite series only to spend your entire Saturday binging the 
whole series? The types of algorithms that power these services and 
suggest what new show or movie you should watch based on your 
history are uninspiringly called recommender systems. Their job is to 
maximize your time watching something. We also see these algorithms 
on news sites. In recent years, we have seen the impact recommender 
systems can have on dividing a population by creating so-called echo 
chambers. This describes what happens when recommender systems 
funnel like-minded people into the same corners of the internet, away 
and protected from differing opinions or facts. 
 If you start searching for flat-earth ideas, you will progressively 
get more stories or comments about flat-earth conspiracies. But 
what’s interesting is that you will also get more suggestions to read 
about other conspiracies, like Big Foot or Pizzagate. Eventually, some 
people fall down the rabbit hole of conspiracy theories, and because 
the same algorithms have found other people with similar proclivities 
for conspiracies, they all start building on each other’s comments, 
and there is no one in the group with a different opinion to offer 
some perspective. The algorithm is also not going to suggest material 
disputing the flat-earth idea because the goal of the algorithm is not 
to teach or to differentiate between facts and fiction. The goal of the 
algorithm is to maximize traffic to the “news” site. And maximizing 
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something is one of the things that algorithms can do very well.
 When it comes to algorithms that interact with humans with 
the goal of then influencing human decisions, we need to be very 
careful. In these systems, the human becomes another variable, and 
the root of the problem is that the goal of the algorithm is not aligned 
to the well-being of the human. The amount of disinformation and 
division in the world today is in no small part due to how easily we 
can be influenced by recommender systems. Propaganda and division 
aren’t new forces we have to contend with. They have always existed. 
The problem we have today is scale. As our algorithms become more 
powerful and more capable of tuning into our fears and insecurities to 
drive our behavior, the more profound their influence will be, which 
can have catastrophic consequences—such as perpetuating biases and 
inequalities or maximizing a company’s profits at the expense of our 
mental health or compromising our ability to discern fact from fiction. 
This—not robot overlords—is what worries me about AI.

Why have we spent so much time discussing biases and critiquing AI 
in this chapter? Shouldn’t a book about AI promote its benefits? 

The purpose of this book has been, first and foremost, to inform. 
Its aim: to explain how some common AI algorithms work and to shift 
the conversation from hypothetical future problems that we don’t know 
how to solve—problems that, indeed, we don’t know when, how, or if 
they will manifest—to current problems we must be discussing. Now 
that we have covered some chief areas of concern, we can ask whether 
it is all doom and gloom or whether there is hope. Are there positive 
reasons to pursue AI?
  I spend a lot of time researching artificial intelligence algorithms, 
and the primary reason I wrote this book is because I wanted to 
share the fascinating history of artificial intelligence and the elegant 
mathematics behind its development. These algorithms and their inner 
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workings are too remarkable to be known about or understood only by 
a small group of academics and engineers. To be fair, this exclusivity 
isn’t unique to artificial intelligence. Much of the beauty and elegance 
in science only a few get to see. We don’t build galleries dedicated 
to theorems and proofs. It’s easy to blame the public for their lack 
of interest in the sciences simply because “it’s hard.” But a fair bit of 
blame should also go to the scientists who obfuscate and convolute 
information with arcane phrases and difficult-to-understand language.
  We can appreciate science at many varied levels. We can become 
scientists and understand every technical aspect of a theory, or we can 
forgo delving into the technicalities and learn about a theory’s implications 
and how it might apply to our lives. In a similar way, when we go to an 
art museum and gaze at a Renoir painting, we don’t need to be an artist 
or even know how to hold a paintbrush to enjoy the work. Sure, an artist 
might be able to appreciate the different brushstrokes or understand 
that the paint itself and how it has been prepared are integral parts of a 
masterpiece. Great artists mix their own paints by suspending different 
amounts of pigment in oil. This creates varying degrees of translucency 
in a painting. An artist can view a masterpiece and recognize these details 
in the work, just as they grasp perspective and how 3D objects can be 
projected onto a canvas without losing the spatial relationships in a 
scene. But those of us who don’t understand these details can still derive 
enjoyment from viewing art. We can still marvel at a beautiful painting 
and what someone can do with a bit of color and a brush. This is an 
important part of being human—appreciating and taking pride in what 
we can accomplish as a species. Even if we personally can’t sculpt the 
great David, we can at least enjoy knowing that someone could. Much 
of the beauty and elegance in the sciences is accessible only to those who 
elect to study those subjects, and most people live entire lives without 
being exposed to those qualities, without having the chance to marvel 
at what we as a species have achieved. That is unfortunate because we 
only have one life to live. I believe there is a lot of beauty and elegance in 
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artificial intelligence, and the principles behind these systems are simple 
enough that they can be understood by anyone. Our discussion of fears 
and the downsides of AI can be misconstrued as a certain apprehension 
on my part or distrust of AI. So I think it bears clarifying where I stand 
on AI and the future.
 I consider AI one of the most interesting areas of computer science 
today. Due to relatively recent advancements and its capacity to affect 
our lives, it gets more attention from the media and the public than 
any other subject in computer science. When concerns about AI are 
brought up, they almost inevitably involve big existential threats. They 
involve AI systems gaining awareness and somehow formulating a plan 
to get rid of us, an inferior species. It’s impossible to say whether AI 
algorithms will ever become self-aware and generate their own agendas 
and “free will.” It’s impossible mostly because we do not yet have a 
scientific theory of consciousness. We do not understand how it arose 
in us or how it could arise in others, so today it seems implausible to 
create an artificial system truly capable of being conscious when we 
don’t really know how it could be done. Let’s pause and allow that 
thought to sink in. As we have seen, our AI algorithms today are more 
“A” than “I.” We can stop worrying about a robotic revolution for just 
a minute. Despite all the hype, we don’t yet know enough to create a 
conscious AI; this danger is not imminent.
 Of course, we also don’t know how long it will be before a theory 
arises that changes everything and we get self-aware robots. The best we 
can do today is start having conversations about the ethics of conscious AI. 
If it ever becomes a reality, how should we treat it? What responsibilities 
should we bestow on it, and what are the risks of making it responsible 
for running vital systems? If such systems are truly conscious, is it cruel 
to have them endlessly perform mundane tasks? And are we allowed to 
shut them down when we no longer need them, or is that like killing 
an intelligent being? What are the rights of artificial conscious systems? 
We should have these conversations before anyone attempts to create 
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consciousness, and failure to have a plan in place could create whole new 
areas of unexpected problems and threats. 

Lastly, we must address a fundamental concern of AI—which 
might be exacerbated by a conscious AI in the future. This concern is 
known as the alignment problem. The alignment problem describes the 
phenomenon where the path to reaching the goal for an AI system, 
even if the goal is initially defined by humans, may not be aligned 
with our own well-being. Stuart Russell, a British computer scientist, 
in his 2019 book Human Compatible: Artificial Intelligence and the 
Problem of Control, postulates a set of possible scenarios where an AI 
system could very well destroy humanity in the process of trying to 
accomplish goals set out by humans. In one such example, he imagines 
a geoengineering robot that is tasked with deacidifying the oceans. In 
the process of deacidifying the oceans, the robot devises a plan to use 
up all the oxygen in the atmosphere: an unfortunate side effect being 
the death of all oxygen-dependent organisms on earth, including us.20 
This example illustrates the problem of explicitly defining goals for an 
AI system that shares very little with us. Yes, we might design these 
systems, but they operate in ways that are very different from our own 
way of functioning. Although our algorithms come from our own 
imaginations, future conscious AI systems are unlikely to share our 
values, concerns, and ultimate goals. This last part is subtle. Even in 
Russell’s example, superficially it appears that humans and AI share the 
same goal, deacidifying the oceans. But at a fundamental level, our goal 
is to survive and prosper. 

We can imagine the alignment problem as existing on a sliding 
scale where we start at one end and the issue of alignment exists in an 
immediate time frame. We discussed these issues in the first half of 

20.  Stuart Russell’s examples of bad manifestations of the alignment problem are not 
necessarily specific to conscious AI. Indeed, all the problems we have been discussing thus 
far—AI in the judicial process, advertising, and so on—constitute weaker forms of the 
alignment problem. But with conscious AI systems, the problems would be greater since 
presumably these would be more advanced systems, more integrated into our society, with 
more freedoms to move and make changes to and decisions about our lives and future.
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this chapter, where the algorithms we are using are trying to maximize 
the likelihood of some desired outcome based on an optimization 
process. Due to the simplicity of the algorithms and the complexity 
of the environments in which we sometimes deploy them, however, 
a successful outcome as discovered by the optimization process can 
ultimately be harmful to us.

The further we move to the right, say, on the sliding scale, the more 
dire the consequences of misalignment between humanity’s and the AI’s 
goals. Eliezer Yudkowsky has been warning the world about what he 
perceives as the negative implications of artificial general intelligence 
(AGI) for years now. AGIs are algorithms with the capability to adapt and 
learn—autonomously—to solve any class of problems that human beings 
can solve. In Yudkowsky’s views, this process risks running out of control 
and leading to “artificial superintelligence.” Surely, AGI algorithms are 
still far beyond our current capabilities; nonetheless, the thought of an 
AI seeing us in the same light that we see chimps, as interesting creatures 
but far too primitive to hold an intelligent conversation with, must be 
unsettling. In a blog post where he explains his “death with dignity” 
strategy, Yudkowsky goes into detail concerning the dangers we face. But 
whereas he seems to suggest that it may already be too late to stop the 
eventual machine takeover, I hold a more positive view. After all, we 
are still in charge. We still (as humanity) get to decide where we deploy 
these systems. Any problems we run into today with AI are purely self-
inflicted. We should, however, understand under which conditions we 
might lose control and reach the point where it will be too late.

The alignment problem is fundamentally the same whether we 
are discussing an AGI or the AI algorithms we have visited thus far; 
the only difference is the scale of the problem. The more powerful 
the algorithms, the larger the landscape of possible responses leading 
to situations that are not beneficial to us. It is important to note that 
AGIs are not necessarily sentient or conscious systems. It is entirely 
conceivable to reach an artificial superintelligence without generating 
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consciousness. In this sense, the danger is not in the algorithm being 
out to get us. The danger is simply in us being in the way. 

If we continue to move our imaginary slider to the right, we can 
imagine self-aware and conscious systems at the far end of the sliding 
scale. If we take a moment to carefully consider the conscious human 
mind in contrast with an AI algorithm (conscious or not) trained to 
maximize a specific goal, we will notice an important distinction that 
makes all the difference. In our thought experiment, we can imagine 
that our conscious process might be driven by a set of objective 
functions similar in principle to those driving our AI algorithms. But 
unlike the AI algorithms we designed, the objective functions driving 
our conscious process have been honed by millions of years of evolution. 
We do not have a single objective function that we must maximize; 
we may have hierarchies of functions ensuring that our pursuit of 
higher-level goals does not ultimately end in our own demise. To take 
an example from Nick Bostrom’s 2012 article “The Superintelligent 
Will: Motivation and Instrumental Rationality in Advanced Artificial 
Agents,” an AI algorithm purposed with maximizing the number of 
paper clips in the universe may find that humans stand directly in the 
way of achieving that goal. It is us or paper clips, and the AI algorithm 
is not compelled to choose us. A human provided with the same goal of 
maximizing the number of paper clips in the world might arrive at the 
same conclusion but avoid wiping out humanity because of competing 
goals from lower-level objective functions linked to our own survival.

Consider AI reaching a level of sophistication where its objective 
functions are complex hierarchies driven by some evolutionary 
process (or design) that fundamentally aims to maximize the survival 
of the algorithm. The more power we grant to these algorithms—
connecting them to our power grid, essential services, internet, 
military—the more difficult it will be to control them. The complexity 
of their objective functions may be such that the algorithms are 
indistinguishable from conscious beings, but crucially, their goals and 
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value systems, not having gone through our evolutionary processes 
and experiences (which drove us to control our violence, collaborate, 
and trust each other), will not resemble ours. This is the point where 
we might finally lose control of a much more intelligent algorithm 
that, now, also cares about its own survival. 

The alignment problem encapsulates all such cases where, even after 
we have carefully described a set of goals, the fundamental differences 
between us and AI systems mean that even when the AI systems are 
not purposefully out to get us, our realities are so distinct that intrinsic, 
undefined outcomes will not align to a successful cohabitation. The 
funny thing about the alignment problem—often reserved for use as 
an ominous warning against AI rebellion—is that it is hardly special. It 
is simply a question of where along the sliding scale we find ourselves. 
Today we are still near the very beginning. We do not have AGIs, and 
we will not have sentient machines anytime soon, at least not until 
we agree on what “sentience” or “consciousness” even means. But we 
must be aware of the alignment problem at each time step. That is the 
message of this book. We can worry about the problems of the future, 
but we certainly need to understand the problems we face today! 

And while there is a lot to consider and to worry about with respect 
to AI, and important risks that must be addressed, consciousness 
and AGIs are not the only threats. That was the point of the first 
half of this chapter—to encourage an honest conversation about the 
systems we have today and understand that we are already using our 
very primitive AI systems in ways that can harm us and are harming 
us. Instead of only focusing on a future plausible threat, perhaps we 
should also focus on the current ones, even if they are less exciting. 
 Once we are aware of the problems and have a basic understanding 
of how these systems work, we can start to differentiate between reality 
and fiction. We can see that, like any tool in our history, AI can be helpful, 
and it can be damaging. Having these discussions should empower us to 
believe that we can select the beneficial use cases and drop the harmful 
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ones, instead of fearing all aspects of AI and deciding that we want to 
ban it (as if that were possible). That’s why researchers need to be honest 
and the public needs to be informed. History has shown that once we 
discover a tool that can be helpful, we are not capable of abandoning 
it even if it poses significant risks. My hope and my goal have been to 
help expose the benefits and the risks of AI, especially of our current AI 
systems, to attempt to combat irrational fears and replace them with the 
need to formulate helpful actions.



We have talked about the drawbacks, so let’s close by discussing 
the advantages to adopting AI solutions to various problems we 

face. Where can AI help? Are there immediate benefits to AI, or is it 
just a dangerous novelty? As the technology matures and our ability to 
employ these technologies in more areas increases, we will find benefits 
we are not yet able to imagine. This is the nature of discovery. When the 
personal computer was invented, no one could have predicted all the 
different use cases and solutions they represent today. As an exercise, 
we will focus on two specific areas of AI research when discussing its 
benefits, but note that we are just scratching the surface of what AI can 
do, and its benefits will only increase with time. Our areas of focus are 
autonomy and health care. By autonomy, I mean systems that operate 
without human intervention and perform tasks on behalf of a human. 
Examples include robots operating in warehouse environments and 
self-driving cars. The health care sector is broad (and expanding), and 
the potential for AI interventions is high.
 Self-driving cars are already operating to some extent on our 
highways. For the most part, these cars are not yet entirely autonomous, 
and they require human supervision and intervention to prevent 
accidents. There are companies like Waymo, which operates an urban 
fleet of entirely self-driven taxies. In some cities where they have been 
running for years, mapping different routes, the cars don’t even include 
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a safety driver (a human driver used as a last resort to avoid an accident). 
There are also companies that are employing smaller self-driven vehicles 
for food delivery. These operate in urban cores, along predefined 
routes and amid more controlled environments. When we think of 
self-driving cars, however, we usually think of our own cars taking us 
to different places, different cities, different countries, all without our 
having to touch a steering wheel. Companies like Tesla believe they are 
close to making this happen. Other people in the industry are more 
skeptical and believe the technology is still not good enough to achieve 
full autonomy for at least a decade. Whichever side you take, one thing 
is true: self-driving cars are coming; it’s just a matter of when. We then 
must ask the question: Is this a good thing?
 Let’s be honest, when we drive down a busy highway on any 
given day, and we see how some people drive—either at a snail’s pace, 
clogging the lanes, or too fast, weaving in and out of traffic—it’s 
difficult to argue that, in principle, this finesse is hard to automate. 
I think that, in the future, when all cars are self-driven and the roads 
and infrastructure are in place for car-to-car and car-to-infrastructure 
communication, traveling by car will be much safer than it is today. We 
will no longer have to worry about impaired driving. When cars can 
communicate their moves to other cars in their vicinity, the flow will 
be much smoother, and traffic jams should be less common. Think of 
our reaction times versus the reaction times of machines. Most driving 
manuals suggest we should drive at least two seconds behind the car in 
front of us. The reason is that two seconds should give us enough time 
to react to a sudden move by the car in front. Computers can react 
much more quickly than that; therefore, self-driving cars should be 
able to close that gap safely so that, even on crowded highways, traffic 
should flow less impeded than it does today. 
 Think of what it means for a car to no longer require a human 
driver. Visually impaired people will have more freedom to move 
around and run errands without requiring assistance or hiring taxis. 
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Single parents who struggle with balancing work and picking their 
kids up from school will be able to have their cars take them to and 
from school—all without a driver inside. The question is whether all 
of this can be done safely. There is a whole industry grappling with 
this question right now. I think the answer is that for self-driving cars 
to become the standard mode of transportation, they don’t have to be 
perfect; they simply have to be safer than human drivers are today, and 
I think that’s certainly possible.
 Clearly, none of this is easy. And there truly is a whole industry 
today discussing and defining the safety measures that will create the 
self-driven cars and necessary infrastructure of tomorrow. Some of 
these discussions involve insurance: Who is responsible for an accident 
when there is no human driver? Some are around ethics: How does 
a car decide between crashing into another car with people in it or 
veering into a median in a solo collision? These are all important 
questions, and they are well beyond the scope of our book. Our goal 
here is to understand, as it relates to AI and assuming that all ancillary 
questions are answered and resolved, why it is that self-driving cars 
should be automatable and a good use case of AI whereas the judicial 
process is not. To me, the test for whether AI is a good fit to solve a 
human-related problem is if it doesn’t aim to influence our behavior (as 
in the case of advertising and recommender systems) and if there is a 
fundamental set of rules to solve the problem. 
 In the case of criminal courts, what happens to suspects, how they 
should be judged, how long they should be in prison, and the severity 
of the sentence are more nuanced considerations than a strict set of 
rules. These are decisions that require compassion, and they require a 
judge to sometimes err on the side of hope to end the cycle of violence 
and transgressions that got the suspect into court in the first place. 
Sure, this process leaves gaps for terrible people to take advantage of 
the system, but remember that we have already accepted this as the 
price for our freedom. This is the very principle of our court systems, 
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that it is better for a guilty person to walk free than to send an innocent 
person to prison. 
 So why is self-driving different? The problem of self-driving is 
fundamentally a perception and reaction problem. If we look at the 
basics of driving, a set of overarching questions emerges: Is there an 
obstacle in front of me, and if so, how do I react to it? Do I stop, 
or do I avoid it? To make those decisions, the cars have an array of 
sensors and algorithms that interpret the input from those sensors 
and correct the car’s position and speed accordingly. As long as the 
goal of the algorithms remains, ultimately, to avoid a collision (as is 
the primary goal for humans), I believe AI will eventually be capable 
of outperforming human drivers. The problem we need to avoid is 
asking too much from an AI system—for example, expecting it to not 
only avoid a collision but also, considering that a collision is about to 
happen, to choose the best outcome for a collision. This is where things 
could turn bad quickly. 
 It’s hard to define what “best” means, and “best” for an algorithm 
might be different from “best” for the passengers inside the vehicle 
or for those outside. Consider the hypothetical case of a self-driving 
AI trained on a data set of collisions and outcomes with the goal of 
learning to choose the best outcome given that a collision is imminent. 
Most modern cars are generally safe and are comparably adept at 
keeping passengers safe during a collision, so let’s assume that in this 
data set the most salient consequence of a collision is insurance cost. In 
an imminent collision when the AI’s choice is between crashing into a 
luxurious car versus an older one, the AI might choose to crash into the 
older one to minimize the financial cost of the collision. Clearly, this 
leads down the wrong path of an ethics argument. 
 What should the car do instead if it knows that whatever it chooses, 
it’s going to crash into something? I don’t think I have the answers, and 
these unresolved questions are part of the reason we don’t have fully 
autonomous cars yet. For the purposes of our discussion, let’s say that 
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an answer could be to reduce speed and crash into the object in front 
at a slower speed. Is this always a good solution? Probably not. But at 
least it’s deterministic, and it avoids the problem of the AI choosing 
the cost of a collision by putting a price on people. Indeed, an AI 
that is capable of driving better than a human is a difficult problem to 
solve, but I think it’s possible because, when we consider how we drive, 
fundamentally we are following a set of rules. We are primarily trying 
to avoid objects, and in most cases, when we get into a collision, we 
hit an obstacle while trying to avoid other obstacles; in general, we are 
not making ethical or financial choices for what’s best to crash into. I 
suspect that it is possible to design an algorithm that, while not perfect, 
can learn enough rules to avoid more collisions than humans do and 
can opt to protect its own passengers when it gets into a collision, 
instead of weighing which other people it is best to crash into. 
 AI algorithms are currently being deployed in another important 
domain where their applicability will only increase in the future: 
health care. One of the biggest bottlenecks in many health care 
systems around the world is in diagnosing diseases. AI systems like 
the convolutional neural networks we discussed in chapter 2 can be 
used to analyze images of disease and grade the severity of the disease 
in patients. Much of the current work is still in the research stage, 
but many use cases already abound. For example, technicians can use 
neural networks to classify chest X-rays and distinguish between scans 
showing signs of pneumonia and scans showing healthy lungs. Also, 
engineers have trained neural networks to analyze images of potentially 
cancerous biopsied tissue, including classifying and detecting varying 
grades of melanoma (skin cancer), prostate cancer, bladder cancer, and 
many other types of cancers. 
 The networks are trained with data sets of images labeled by 
expert pathologists as exhibiting certain grades of cancer. During the 
training phase, the system learns to pick up on the features of the 
images that might indicate different severities of cancer. For now, 
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most of this work is being conducted in research labs, but the hope is 
that eventually automation systems could be deployed to help ease the 
burden of diagnosis on medical experts. It’s well known that the best 
chances of surviving cancer depend on our ability to find it early. This 
means that the quicker an expert can analyze a test from a patient, the 
sooner the patient can get the help they need. Unfortunately, experts 
aren’t always available when they are needed, and the ones who are 
available are stretched thin and overburdened with a long line of 
waiting patients. We are not there yet, but these automated systems 
should help greatly augment the diagnostic power of hospitals and 
labs around the world. 
 A subfield within the health care domain that looks to benefit 
greatly from the application of artificial intelligence to its research is in 
the development of pharmaceuticals. Alphabet, the company that owns 
Google, recently spun off a brand-new company called Isomorphic Labs, 
dedicated to helping find treatments for diseases related to proteins and 
their shapes. It turns out that many terrible degenerative diseases—like 
Alzheimer’s, Parkinson’s, and Huntington’s—are suspected to be related 
to misfolded proteins. Proteins are made up of long chains of amino 
acid molecules. Ribosomes, which are molecular machines found in all 
living cells, fold protein strands into specific 3D shapes. These shapes 
are responsible for much of the protein’s functioning. Sometimes, the 
folding process breaks down, and the protein is folded into a shape 
that affects the expected function of the protein, resulting in what is 
known as protein misfold. Understanding the shape into which proteins 
are folded in 3D space is vital to designing drugs to treat the effects 
of misfolded proteins. DeepMind, an AI research group at Google, 
created an algorithm named AlphaFold that is trained to predict the 
shapes of proteins. In the relatively short time this algorithm has been 
training, it has reportedly outperformed the speed and capabilities of 
human research teams in predicting protein shapes. Isomorphic Labs 
was created to further expand on the research that produced AlphaFold 
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and to eventually work with pharmaceutical companies to produce 
drugs that can treat such diseases.
 These different health care scenarios are great examples of uses 
cases where in principle AI algorithms should benefit us. Why? Because 
diseases and their diagnoses typically follow a set of rules. For example, 
depending on certain characteristics of a group of cells in a biopsy 
slide, the shape of the cells, and the number of cells in a given region, 
as well as sudden unexpected blood vessels feeding these cell regions, 
a pathologist might determine that the tissue shows signs of cancer. 
The rules are complicated, and humans don’t know all the rules in 
most cases; this is why the process of diagnosing a patient is complex 
and requires experts. And it’s not 100 percent accurate—in fact, for 
some cancers, the accepted detection accuracy for human pathologists 
is around 75 percent. 
 This is also why we need neural networks to discover the rules for 
diagnosing diseases. Even an expert pathologist whose job is to detect 
these diseases will produce diagnoses that often differ from other experts’ 
assessments. Because the rules for diagnosing a disease are complex and 
not well defined, pathologists learn them through experience and by 
developing what might be called an “instinct” for it. If the rules were 
well understood and well defined, we wouldn’t need artificial neural 
networks to discover the rules. We could create a classic decision tree, 
which could check a list of features and, depending on which features 
are “ticked,” could decide whether the disease is present. But this is not 
the case. Instead, we need to discover the rules through the learning 
process of artificial neural networks. Although the rules are complex 
and we have not yet discovered all of them to systematically diagnose 
every disease, it should be possible to discover them. 
 Determining whether a patient has a disease should not be, at its 
core, subjective and nuanced. It must be a matter of learning to detect 
the signs of the disease. This is why artificial intelligence algorithms are 
in principle a good fit. The process should not require the algorithm 
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to make ethical or compassionate decisions. The process simply trains 
the algorithm to learn to identify features that predict a certain disease. 
Of course, researchers cannot be careless about the data or the process 
we use to train these algorithms. Researchers must indeed be careful 
that biases are not introduced in the training process, and they must 
be extremely careful to not draw broadly optimistic conclusions 
about preliminary results, which might lead to prematurely deploying 
systems that don’t generalize well over an entire population. This could 
endanger the larger population by providing incorrect diagnoses and 
further erode the public’s trust in these systems. But nevertheless, in 
principle, diagnosing a disease in a patient should be automatable 
because it is not a subjective problem.

We are just beginning to understand and cultivate the potential 
benefits for AI in health care. Automated disease diagnosis, discovery 
of new drugs, biomedical implants meant to monitor specific body 
functions—all are areas where AI research has the potential to change 
our lives for the better. Elon Musk has started a new company called 
Neuralink, which is researching methods for implantable brain-machine 
interfaces that, combined with prosthetics, could help disabled people 
gain lost functionality. Some researchers hope that brain implants 
will one day help cure specific types of blindness caused by damaged 
regions of the brain. These examples should give us hope and make us 
optimistic about the future of AI. AI can benefit us, and it can harm us; 
it’s all about how we choose to use it.

Earlier, I said that self-driving cars and robots that work in 
warehouses stocking and dispatching items are examples of autonomous 
AI systems. I went ahead and explained self-driving cars but did not 
elaborate on robots in warehouses. Companies today are already 
employing robots tasked with filling skids with boxes, moving the skids 
to stock shelves, and retrieving skids from the shelves to different loading 
areas for dispatching. These robots exemplify AI systems that operate 
well autonomously, without human interaction. They can identify the 
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objects they are tasked with handling. They physically move the objects 
from location to location, and they can avoid obstacles in their path. 

Some see these robots as a positive example of machines performing 
what are among the most dangerous jobs in warehouses and removing 
humans from areas of frequent accidents. Robots don’t need weekends off 
or vacation or sick leave, and they do not require sleep. So from the point 
of view of the company owner, they are better at scaling production. A 
clear benefit of this is an expanding economy. It is also important to 
note, however, that automation leads to displacing humans from jobs 
they need, which many fear will add to an eventually catastrophic mass 
unemployment. Whenever new transformational technologies arise, 
especially technologies capable of automating tasks traditionally done 
by humans, job losses will inevitably follow. I do not know whether 
the current path of AI and automation will lead to catastrophic mass 
unemployment. Some jobs will certainly disappear, but I suspect that 
new ones will be created to support new industries. When we look at the 
history of civilization, there have been many periods of invention and 
automation and job displacement, but new industries have sprung up 
to provide new job sectors as well. What will likely happen is that jobs 
will continue to become more and more sophisticated, requiring higher 
education. The sector of the population caught in the change will lose 
their jobs, but they should not be left by the wayside. 

Such shifts, and especially their consequences, are no longer a 
problem of AI or technology; they are a matter of government policy. It 
would be quite unfortunate were we to start advocating for the constraint 
of technological advances simply because we can’t take care of the 
population affected by the shifting job market. Some thought leaders in 
these areas suggest universal basic income as a possible solution to the 
job losses created by automation. I do not know whether this is a good 
solution; what I know is that a good and healthy society should aim to 
take care of those in need. How we provide help to people displaced by 
automation—whether it is by offering a type of universal basic income 
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or retraining opportunities in emerging industries or a combination of 
those possible solutions—will be determined by government policy. 
When it comes to policy, we ultimately make the decisions. 

In the 1970s and 1980s, only a select few technologists were familiar with 
computers and their capabilities. Today, most people understand what a 
computer is and what it can do. Of course, an expert will still know more 
than the average person, but a conversation about a software application 
no longer must begin by explaining what a computer is. Similarly, we can 
discuss the internet as a great tool for staying connected with friends and 
family, as a tool for learning about the world and different cultures. The 
internet, however, also presents dangers. 

When we discuss these qualities, the good and the bad of the 
internet, we can move straight to the problem without the need to 
begin with an explanation of what the technology is. We may suppose 
that when the internet was in its infancy in the early 1990s, a few 
tech visionaries could have predicted a future where the internet 
would be central to our lives—a future where we would work, hang 
out, seek refuge and entertainment, and indeed live on the internet. 
But discussions addressing the advantages and disadvantages of such a 
future would have been difficult at that time. 

If you are old enough, you may recall that during the nineties chat 
rooms became a sensation. You could type a message, and a stranger 
halfway around the world would reply instantly! As a kid, I spent hours 
in these chat rooms. In those days, many people—including most of our 
parents—did not understand what a chat room was. Most people still 
didn’t really understand what you could do with a single computer, let 
alone what you could do with a network of interconnected computers 
all over the world. It took nearly three decades to get to any meaningful 
conversation about the internet—discussions that we have only recently 
begun concerning child safety, privacy, online identity, security, and so 
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on. We have had to wait for internet (and computer) literacy to reach a 
point where we no longer must explain what the technology is so that 
we can discuss how it is affecting us.

When it comes to artificial intelligence, the conversation has not 
yet matured to this level. We may have digital assistants all over our 
houses, replying to our endless queries, but we don’t yet understand 
how such systems work, what information they are collecting, or how 
they might use that information in ways that can affect our lives. Our 
kids are having conversations with these digital assistants—getting 
them to tell jokes, asking questions about animals, and requesting 
videos on YouTube. We may find this as amusing as the chat rooms of 
the nineties. But this time, we shouldn’t wait three decades to discuss 
the responsible use of this new type of technology. 

The hope is that—with this book and others like it—the public 
will gain enough understanding of what artificial intelligence is and its 
basic capabilities to appreciate its formidability. With this knowledge, 
we can tune into what is inevitably part of our shared future. We can 
better position ourselves to stay informed about its developments. We 
can understand how our behavior informs the behavior of AI systems. 
And, as circumstances require, we can influence relevant policy. 

I hope you have enjoyed this book, and I hope it has inspired you 
to further expand your understanding of artificial intelligence. We have 
only scratched the surface.
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