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CHAPTER 1: POLARIZATION 
AND ITS CONSEQUENCES

Figure 1.1  A simple artificial neural network. Information flows from left to right. 
The two circles in the first layer are the input nodes. The three circles in the middle are 
the processing neurons, and the one circle on the right represents the output value. 
The output in a neural network signifies a “prediction” on the input.

Figure 1.2  Tumor cells of the covering membranes of the brain, 1890. Cajal Institute 
(CSIS), Madrid.
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Figure 1.3  A purkinje neuron from the human cerebellum, ca. 1900. Cajal Institute 
(CSIS), Madrid.
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Figure 1.4  A cut nerve outside the spinal cord, 1913. Cajal Institute (CSIS), Madrid.
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Figure 1.5  “Coupe transversal de la rétine d’un mammifère” (Cross section of the 
retina of a mammal). Illustration from Les nouvelles idées sur la structure du système 
nerveux: chez l’homme et chez les vertébrés (Paris: C. Reinwald, 1894), 112.
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Figure 1.6  A McCulloch-Pitts neuron with two inputs, a firing threshold of 2, and 
one output. In the example on the right, both input signals have a value of 1.
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Figure 1.7  An and logic gate with two inputs and one output. If either of the inputs 
is 0, the output is 0. If both inputs are 1, the output is 1.

Table 1.1  and Gate and Possible Input/Output Combinations

Input 1 Input 2 Output
0 0 0

0 1 0

1 0 0

1 1 1

 

0 1NOT

Figure 1.8  A not logic gate, with one input and one output. If the input is 0, the 
output is 1. If the input is 1, the output is 0.
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Table 1.2  not Gate and Possible Input/Output Combinations

Input 1 Output
0 1

1 0

1
0

1OR

Figure 1.9  An or logic gate with two inputs and one output. If either input is 1, the 
output is 1. If both inputs are 0, the output is 0.

Table 1.3  or Gate and Possible Input/Output Combinations

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 1

OR

AND
1

0

1 1

1

Figure 1.10  An and gate and an or gate automatically controlling access into the EU. 
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Figure 1.11  Three activation functions we refer to often in this chapter. The sigmoid 
activation function (a) outputs a value between 0 and 1 for all its inputs, with an 
input 0 producing 0.5 as output. The rectified linear unit activation function (b) 
outputs 0 for all negative inputs, and outputs the unmodified input value for all 
positive inputs. The threshold function (c) outputs a 0 for all input values below the 
threshold value; for input values equal to or greater than the threshold, it outputs a 1.
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Figure 1.12  A Rosenblatt perceptron with five input connections. Each connection 
has a weight (w) associated with it. The value of the weight can be any number between 
0 and 1. The output of the perceptron depends on the weighted sum operation passing 
the threshold test.
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Figure 1.13  Possible outputs of the and, or, and xor logic gates. The and gate outputs 
a 1 only when both X1 and X2 are 1. This is shown as the red circle; otherwise, it outputs 
a 0 (blue circle). The outputs of an and gate are linearly separable: we can draw a single 
line that separates the two classes of outputs, 0 and 1. The same is true for the or gate. 
But for the xor gate, we cannot draw a single straight line to separate the classes of 
outputs: the outputs of the xor gate are not linearly separable.
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Figure 1.14  A multilayer perceptron (MLP) with two hidden layers. Three input nodes 
are connected to the first hidden layer (h1), and h1 is connected to the second hidden 
layer (h2), which is connected to the output neuron.
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Figure 1.15  The weight values of the connections to h1
1. Note that we have removed 

the connections to the other neurons in h1 only for visibility reasons.

Equation Series A

h1
1 = ReLu(w1,1

1
 I1 + w1,2

1I2 + w1,3
1I3) 

= ReLu(–0.1*0.2 + 0.25*0.01 + (–0.03*0.4))

Recall that ReLu functions output 0 for negative values.

= ReLu(–0.0295)
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Figure 1.16  The weight values of the connections to h2
1 (as in fig. 1.15, simplified 

for visibility). 
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Equation Series B

h2
1 = ReLu(w2,1

1
 I1 + w2,2

1I2 + w2,3
1I3)

= ReLu(0.21*0.2 + 0.3*0.01 + 0.1*0.4)

= ReLu(0.085)

= 0.085
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Figure 1.17  The weight values of the connections to h3
1. 

Equation Series C

h3
1 = ReLu(w3,1

1
 I1 + w3,2

1I2 + w3,3
1I3)

= ReLu(0.65*0.2 + (–0.025)*0.01 + 2.4*0.4)

= ReLu(1.1)

= 1.1 
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Figure 1.18  The weight values of the connections to h4
1. 

Equation Series D

h4
1 = ReLu(w4,1

1
 I1 + w4,2

1I2 + w4,3
1I3)

= ReLu(–0.01*0.2 + 0.0018*0.01 + (–2.9)*0.4)

= ReLu(–1.16)
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Figure 1.19  The inputs and weight values of the connections to h1
2. Note that each 

input into layer h2 is the output of h1 [0, 0.085, 1.1, 0], which was calculated in the 
previous steps. 
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Equation Series E

h1
2 = ReLu(w1,1

2
 h1

1 + w1,2
2

 h2
1 + w1,3

2 h3
1 + w1,4

2 h4
1)

= ReLu(–0.21*0 + (–0.115)*0.085 + (–2.5)*1.1 + (–3)*0)

= ReLu(–2.75)

= 0
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Figure 1.20  The inputs and weight values of the connections to h2
2. 

 
Equation Series F

h2
2 = ReLu(w2,1

2
 h1

1 + w2,2
2

 h2
1 + w2,3

2 h3
1 + w2,4

2 h4
1)

= ReLu(0.15*0 + 0.28*0.085 + 0.68*1.1 + 2.79*0)

= ReLu(0.77)

= 0.77 
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Figure 1.21  The output of h2 as the input into the output layer, along with the 
connection weights to the output layer. 
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Equation Series G

O = sigmoid(w1,1
3

 h1
2 + w1,2

3
 h2

2) 
= sigmoid(1.25*0 + 2.18*0.77)
= sigmoid(1.68)
= 
= 0.84

Figure 1.22  A best-fit line (red line) running through a set of data points (blue dots). 
We can use the best-fit line to predict the value for missing data samples. 

Table 1.4  Feature Description of the Boston Housing Price Data Set

1 Per capita crime rate by town

2 Proportion of residential land zoned for lots over 25,000 sq. ft.

3 Proportion of nonretail business acres per town

4 Charles River dummy variable (1 if tract bounds river; 0 otherwise)

5 Nitric oxides concentration (parts per 10 million)

6 Average number of rooms per dwelling

7 Proportion of owner-occupied units built prior to 1940

8 Weighted distances to five Boston employment centers

9 Index of accessibility to radial highways

10 Full-value property-tax rate per $10,000

11 Pupil-teacher ratio by town

12 B – 1000(Bk – 0.63)^2 where Bk is the proportion of Black residents by town*

13 LSTAT: % lower status of the population

14 Median value of owner-occupied homes (in thousands of dollars)

*Note: Row 12 bears addressing, but to not break the flow of the current explanation, it will 
be addressed immediately following the end of this chapter.
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Figure 1.23  A vector in 2D space (left) and a vector in 3D space (right). A vector is just 
a point in some space with an arrow running from the origin to the point. 
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Figure 1.24  Two classes of vectors in a 3D space separated by a hyperplane. The vectors 
to the left of the plane (pointing to the purple points) belong to one class, and the vectors 
to the right of the plane (pointing to the green points) belong to a different class. Why 
is this useful? If we get a new sample and we do not know what class it belongs to, all 
we need to do is interpret it as a vector and see on which side of the plane it falls; then 
we can predict its class. 
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CHAPTER 2: HELLO, PANDA!

Figure 2.1  Left, an input image, Leonardo da Vinci’s Lady with an Ermine; center, the 
result of an edge detection operation; right, the result of a Gaussian filter operation. 
Both operations were performed following the process described in figure 2.2. 
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Figure 2.2  Left, a 12 × 12 pixel image with the associated value for each pixel; above 
right, an edge detection filter matrix; below right, a Gaussian blur filter matrix. 
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Figure 2.3  The VGG-16 neural network architecture consists of several convolutional 
layers, where each layer is a collection of 3 × 3 filter matrices. Layers 1 and 2 both contain 
collections of sixty-four 3 × 3 filter matrices. The output of these two layers is a volume 
of sixty-four images, called feature maps, the same size as the input image. Author’s 
rendering based on Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional 
Networks for Large-Scale Image Recognition” (poster presented at the Third International 
Conference on Learning Representations, San Diego, CA, 2015), https://doi.org/10.48550/
arXiv.1409.1556.  
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Figure 2.4  The VGG-16 neural network architecture is divided into a convolutional 
feature-extraction portion and an MLP classifier portion. The CNN section itself 
is divided into blocks of layers of equal numbers of filter matrices, with a MaxPool 
operation between blocks. The final output of this neural network as shown in the MLP 
section comprises 1,000 values. This neural network can classify objects into 1,000 
different categories. Author’s rendering based on Karen Simonyan and Andrew Zisserman, 
“Very Deep Convolutional Networks for Large-Scale Image Recognition” (poster presented 
at the Third International Conference on Learning Representations, San Diego, CA, 2015), 
https://doi.org/10.48550/arXiv.1409.1556. 
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Figure 2.5  The MaxPool operation serves to reduce the size of the data that must be 
processed in each block. It is performed by selecting a 2 × 2 pixel window on the top left 
of the input image and then selecting the pixel with the highest value in that window. 
This pixel is kept and becomes the first pixel in the output image; the other pixels are 
discarded. We then slide the 2 × 2 pixel window to the right and continue processing 
the input image. In this example, our first 2 × 2 pixel window contains the following 
pixel values: 1, 3, 18, 88. The highest value is 88, so we keep this pixel and discard the 
rest (right). The next window contains: 10, 0, 43, 23. The highest value is 43, so we 
keep this pixel and discard the rest. Thus, we reduce the input image from 12 × 12 
pixels to 6 × 6 pixels.

Table 2.1  Four Classes of Batteries Our Neural Network Must Identify

Class label Class

0 9V 

1 AAA

2 AA 

3 Button
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Table 2.2  Probability Outputs for Each Predicted Class

Predicted class Prediction

0 0.98

1 0.01

2 0.007

3 0.003

Table 2.3  Probability Outputs Conveying a Neural  
Network’s Lower Confidence Level on the Correct Classification

Predicted class Prediction

0 0.025

1 0.65

2 0.32

3 0.005
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Figure 2.6  Hubel and Wiesel’s hierarchy model. Information flows from the retina to 
the brain’s visual cortex in a cat. It’s hard not to see a strong resemblance to artificial 
neural networks. Author’s rendering based on Hubel and Wiesel 1962. 
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“gibbon”
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Figure 2.7  Two different kinds of artificial optical illusions created by different 
researchers that have been able to fool neural networks. Top, four examples of noisy-
looking images that caused a well-trained neural network to predict “robin,” “cheetah,” 
“armadillo,” and “lesser panda” for each sample. Bottom, an image of a panda: the trained 
neural network predicts that this is an image of a panda with 57.7 percent confidence; 
researchers then modify the image by adding a small amount of noise, resulting in 
an image that looks no different to us but causes the neural network to reclassify the 
image as a “gibbon” with 99.3 percent confidence. Image of “panda”/“gibbon” from 
Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, “Explaining and Harnessing 
Adversarial Examples” (poster presented at the Third International Conference on Learning 
Representations, San Diego, CA, 2015), https://doi.org/10.48550/arXiv.1412.6572. Image 
of noisy “robin,” “cheetah,” “armadillo,” and “lesser panda” from Anh Nguyen, Jason Yosinski, 
and Jeff Clune, “Deep Neural Networks Are Easily Fooled: High Confidence Predictions for 
Unrecognizable Images,” in 2015 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 427–36 (Washington, DC: IEEE Computer Society, 2015).  
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CHAPTER 3: ANSWERING AN 
AGE-OLD QUESTION

Neural Network

Latent Vector

Input Sample

Output

Latent Vector

Output

Classification or numerical 
prediction

Figure 3.1  A neural network as a funnel of information. Information is input at the 
top and compressed through the network down to a latent vector representation. The 
output of the network is then typically calculated by performing linear regression (if 
predicting a continuous value) or logistic regression (if performing some classification). 

Table 3.1  Distribution of Boys according to Height in a Survey

Height (m) Number of boys

1.64 30

1.66 80

1.68 200

1.7 400

1.72 220

1.74 50

1.76 20
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Figure 3.2  Histogram of one thousand participants in a survey, arranged according 
to height.
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Figure 3.3  Probability distribution for each possible measurement (orange bars). The 
blue line shows the continuous probability for the height of the surveyed participants 
in the 1.64–1.76 m range.
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Figure 3.4  The probability distribution function for the coin-flipping experiment. 
The x-axis shows the number of tails we can get in an experiment comprising ten coin 
flips. The y-axis shows the probability of flipping any number of tails in ten trials.
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Figure 3.5  Three scatter plots with best-fit lines (black lines) running through 
the data points (blue dots). Subplot (a) shows a positive linear relationship 
between the dependent and independent variable. Subplot (b) shows a negative 
linear relationship between the dependent and independent variable. Subplot (c) 
shows data that does not exhibit a linear relationship between dependent and 
independent variables.
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Figure 3.6  How a linear regression model (i.e., a best-fit line) can predict 
information for missing data in the data set. The segmented line indicates a value for 
the independent variable that does not correspond to any known value in our data 
set (visualized as a gap in the blue dots). The best-fit line can be used to approximate 
the missing information.
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Figure 3.7  The two black lines are simply two possibilities among infinite ways to 
randomly place a line over a data set.
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Equation 3

 = θ1x + θ0

Equation 4

Equation 5
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Figure 3.8  A plot of the line y = x.
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Figure 3.9  A plot of the line y = x2.
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Figure 3.10  What a loss surface for  might look like if the input 
data sample contains a single feature (i.e., x1). 

Equation 6

y = θ1x + θ0
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Figure 3.11  A line running through two random points in the data set. The black 
line is clearly not a best-fit line, yet it runs through two points.
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Figure 3.12  A logistic regression model separating two classes of samples (blue dots 
and orange dots) into different categories. In this figure, x1 and x2 are simply the two 
features describing our 2D data.

Equation 7

y = 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

–6 –4 –2 0 2 4 6

y

X

Figure 3.13  Possible values of y ranging between 0 and 1 for any input x for the 
logistic function, .
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Equation 8

Equation 9

Equation 10

Equation 11

P(x) = px(1 – p)1 – x

Equation 12

P(y|x; θ) = y(1 – )1 – y
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CHAPTER 4:  
INTELLIGENT DISCOURSE

Table 4.1  Predicting and Observing Recidivism  
in One Hundred Cases (First Hypothetical)

Observed behavior

Predicted behavior Suspect reoffended Suspect did not reoffend

Suspect reoffends 35 5

Suspect does not reoffend 20 40

Table 4.2  Predicting and Observing Recidivism  
in One Hundred Cases (Second Hypothetical)

Observed behavior

Predicted behavior Suspect reoffended Suspect did not reoffend

Suspect reoffends 35 20

Suspect does not reoffend 5 40
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